# 나눗셈 규칙 ## 개요 나눗셈 규칙(Quotient Rule)은 미적분학에서 두 함수의 비(商)를 미분할 때 사용하는 기본적인 도함수 계산법이다. 이는 분자와 분모가 각각 다른 함수로 구성된 경우, 단순히 분자와 분모를 따로 미분한 후 나누는 것이 아니라, 특정 공식을 통해 정확하게 도함수를 구할 수 있도록 한다. 본 문서에서는 나눗셈 규칙의 ...
검색 결과
"미분"에 대한 검색 결과 (총 95개)
# 곱셈 규칙 (Product Rule) ## 개요 곱셈 규칙은 미적분학에서 두 함수의 곱을 미분할 때 사용하는 기본적인 도함수 계산법이다. 이 규칙은 단순히 각 함수를 별도로 미분한 후 곱하는 것이 아니라, **첫 번째 함수의 도함수와 두 번째 함수의 곱**과 **첫 번째 함수와 두 번째 함수의 도함수의 곱**을 더해야 한다는 점에서 중요하다. 이 규칙...
# 극한 ## 개요 극한(limit)은 수학에서 함수의 행동을 분석하는 데 핵심적인 개념으로, 특정 점에 가까운 입력값에 대한 출력값의 추세를 나타냅니다. 미적분학의 기초가 되며, 도함수와 적분의 정의에 필수적이며, 물리학, 공학 등 다양한 분야에서 응용됩니다. 극한은 수렴과 발산을 이해하는 데 중요한 역할을 하며, 함수의 연속성, 미분 가능성 등...
# 적분법 ## 개요 적분법(integral calculus)은 미적분학의 핵심 분야로, 함수의 **적분**을 연구하는 수학 이론이다. 주로 곡선 아래의 넓이, 부피, 누적량 등을 계산하는 데 사용되며, 물리학, 공학, 경제학 등 다양한 분야에서 응용된다. 적분은 미분과 반대되는 개념으로, **미분 방정식**을 해결하거나 함수의 원시함수를 찾는 데 필수적...
# 도함수 ## 개요 도함수(derivative)는 수학에서 함수의 변화율을 나타내는 개념으로, 미적분학의 핵심 주제 중 하나입니다. 특정 점에서의 순간적인 변화율이나 기울기를 계산하는 데 사용되며, 물리학, 공학, 경제학 등 다양한 분야에서 응용됩니다. 도함수를 통해 함수의 최대/최소값, 곡선의 기울기, 가속도 등을 분석할 수 있습니다. --- ##...
# 도함수 ## 개요 도함수(derivative)는 수학에서 함수의 변화율을 나타내는 개념으로, 미적분학의 핵심 주제 중 하나이다. 특정 점에서의 순간적인 변화율이나 곡선의 접선 기울기를 계산하는 데 사용된다. 도함수는 물리학, 공학, 경제학 등 다양한 분야에서 응용되어 중요한 역할을 한다. ## 정의와 수학적 표현 ### 극한을 통한 정의 도함수는 함...
# 표준편차 ## 개요 표준편차(Standard Deviation)는 통계학에서 데이터의 분산도를 측정하는 대표적인 지표로, 평균값을 중심으로 데이터가 얼마나 퍼져 있는지를 수치화한 값이다. 이 개념은 과학적 연구, 금융 분석, 공학 등 다양한 분야에서 활용되며, 특히 회귀분석에서 모델의 예측 정확도를 평가하는 데 중요한 역할을 한다. --- ## 정...
# 기하학 ## 개요 기하학(幾何學)은 수학의 한 분야로, 공간과 형태, 크기, 상호관계를 연구하는 학문이다. 고대부터 현대에 이르기까지 인간이 자연현상과 물리적 세계를 이해하기 위해 발전시킨 체계적인 지식으로, 공학, 물리학, 컴퓨터 과학 등 다양한 분야와 밀접한 연관을 가진다. 기하학은 도형의 성질을 탐구하는 동시에 수학적 추론과 논리를 활용해...
# 대수학 ## 개요 대수학(algebra)은 수학의 한 분야로, 수와 기호를 사용하여 수량 간의 관계를 추상화하고 일반화하는 학문이다. 이는 단순한 계산을 넘어 변수, 방정식, 함수 등 복잡한 구조를 탐구하며, 과학, 공학, 컴퓨터 과학 등 다양한 분야에서 필수적인 도구로 활용된다. 대수학은 고대부터 현대까지 수많은 수학자들의 연구를 통해 발전해왔으며,...
# 무리수 ## 개요 무리수(無理數, *irrational number*)는 유리수(有理數)가 아닌 실수를 의미합니다. 유리수는 두 정수의 비로 표현할 수 있는 수이지만, 무리수는 그렇지 못한 수입니다. 이들은 수학에서 중요한 역할을 하며, 기하학, 대수학, 해석학 등 다양한 분야에 적용됩니다. ## 정의 및 특성 무리수는 **유리수가 아...
# 미적분학 ## 개요 미적분학은 수학의 중요한 분야로, 변화율과 누적량을 연구하는 학문이다. 고등학교 수학에서 필수적인 내용으로, 함수의 극한, 도함수, 적분 등을 다루며 과학, 공학, 경제학 등 다양한 분야에 응용된다. 이 문서는 미적분학의 기초 개념부터 실제 적용까지 체계적으로 설명한다. --- ## 1. 미적분학의 역사와 개발 ### 1.1 고...
# 미적분학 ## 개요 미적분학(calculus)은 수학의 중요한 분야로, 변화와 누적을 연구하는 학문이다. 17세기에 뉴턴(Isaac Newton)과 라이프니츠(Gottfried Wilhelm Leibniz)에 의해 체계화된 이 분야는 물리학, 공학, 경제학 등 다양한 과학 분야에서 필수적인 도구로 사용된다. 미적분학은 **미분**과 **적분** 두 가...
# 활성화 함수 ## 개요/소개 활성화 함수는 인공신경망(ANN)에서 입력 신호를 처리하여 출력을 생성하는 데 사용되는 핵심 요소입니다. 이 함수는 신경망이 비선형 관계를 학습할 수 있도록 하며, 단순한 선형 모델로는 해결 불가능한 복잡한 문제(예: 이미지 인식, 자연어 처리)를 해결하는 데 기여합니다. 활성화 함수의 선택은 네트워크 성능, 수렴 속도...
# 시그모이드 함수 ## 개요 시그모이드 함수(Sigmoid Function)는 **0에서 1 사이의 값을 출력**하는 비선형 활성화 함수로, 인공지능(AI) 및 머신러닝(ML) 분야에서 널리 사용됩니다. 이 함수는 로지스틱 회귀(Logistic Regression), 신경망(Neural Network) 등에서 **확률을 예측**하거나 **이진 분류(Bi...
# 경사 하강법 ## 개요 경사 하강법(Gradient Descent)은 머신러닝에서 모델의 파라미터를 최적화하기 위한 기본적인 최적화 알고리즘입니다. 이 방법은 **비용 함수(cost function)**의 기울기(gradient)를 계산하여, 매개변수를 반복적으로 조정해 최소값을 찾는 과정입니다. 경사 하강법은 신경망, 회귀 모델 등 다양한 학습 알고...