검색 결과

"미분"에 대한 검색 결과 (총 148개)

Back-EMF 추정

기술 > 제어공학 > Back-EMF 추정 | 익명 | 2025-09-13 | 조회수 76

# Back-EMF 추정 ## 개요 Back-EM(Back Electromotive Force, 역기전력) 추정은 무러시 모터(Brushless DC Motor, BLDC) 및 영구자석 동기모터(Permanent Magnet Synchronous Motor, PMSM)의 센서리스 제어에서 핵심적인 기술입니다. 모터가 회전할 때, 코일에 유도되는 전압인 ...

계산 그래프

기술 > 인공지능 > 컴퓨테이션 그래프 | 익명 | 2025-09-11 | 조회수 85

# 계산 그래프 **계산 그래프Computational Graph)는 수학적 연산이나 함수의 계산 과정을 **방향성 그래프**(Directed Graph) 형태로 표현한 자료 구조입니다. 이는 인공지능, 특히 딥러 모델의 학습 과정에서 **전파**(Backpropagation)를율적으로 수행하기 위해 핵심적인 역할을 합니다. 계산 그래프는 입력값에서 출력...

스펙트럴 방법

기술 > 수치계산 > 편미분방정식 해법 | 익명 | 2025-09-11 | 조회수 34

# 스펙트럴 방법## 개요 스펙트럴 방법(Spectral Method) 편미분방정(PDE, Partial Differential Equation)의 수치적 해를 구 데 사용되는 고급 수치 해석 기법 중 하나로, 주로 주기적 또는 매끄러운 해를 갖는 문제에 적합하다. 이 방법은 유한 차분법(Finite Difference Method)이나 유한 요소법(Fi...

로지스틱 방정식

생물학 > 수학모델링 > 개체군 성장 모델 | 익명 | 2025-09-09 | 조회수 35

# 로지스틱 방정 ## 개요 로지스틱 방정식(Logistic Equation)은 생물학에서 개체군의 성장 양상을 수학적으로 모델링하는 데 널리 사용되는 미분 방정식이다. 이 방정식은 개체군이 무한한 자원을 가정한 기하급수적 성장(지수 성장)에서 벗어나, 자원의 제한을 고려한 현실적인 성장 패턴을 설명한다. 즉, 개체군이 초기에는 빠르게 증가하지만, 환경...

# 피카르-린델뢰프 정리 ## 개요 피카르-린델뢰프리**(Picard–Lindelöf Theorem)는 상미분방정식(Ordinary Differential Equation, ODE)의 해가 존재하고 유일함을 보장하는 중요한 정리로, 초기값 문제의 해에 대한 존재성과 유일성에 관한 기본적인 결과를 제공한다. 이 정리는 19세기 말 프랑스의 수학자 **에밀...

시그모이드 함수

교육 > 수학 > 시그모이드 함수 | 익명 | 2025-09-07 | 조회수 33

# 시그모이드 함수 ## 개요 시모이드 함수(Sigmoid Function)는 S자 형태의 곡선을 가지는 수학적 함수로, 특히 인공지능, 통계학, 생물학, 그리고 수학 교육 등 다양한 분야 중요한 역할을. 이 함수는 입력값이 매우 작을 때 출력값이 0에 가까워지고, 입력값이 매우 클 때는 출력값이 1에 가까워지는 특성을 가지며, 중간 영역에서는 부드러운...

초기값 문제

수학 > 미분방정식 > 경계 및 초기값 문제 | 익명 | 2025-09-07 | 조회수 44

# 초기값 문제 ## 개요 **초기값 문제**(Initial Value, IVP)는 미분방정식 이론에서 중요한 주제 중 하나로, 주어진 미분방정식과 특정한 초기 조건을 만족하는 해를 찾는 문제를 말한다. 일반적으로 시간에 따라 변화하는 동역학적 시스템의 행동을 모델링할 때 사용되며, 물리학, 공학, 생물학, 경제학 등 다양한 분야에서 널리 활용된다. ...

경계값 문제

수학 > 미분방정식 > 경계 및 초기값 문제 | 익명 | 2025-09-07 | 조회수 44

# 경계값 문제 ## 개요 **경계값 문제**(Boundary Value Problem, BVP)는 미분방정식의 해를 구하는 과정에서, 특정 구간의 **경계**(boundary)에서 해가 만족해야 하는 조건을 제시하는 수적 문제이다. 이는 **초기값 문제**(Initial Value Problem, IVP)와 대비되는 개념으로, 초기값 문제는 독립변수의...

뉴턴 방법

기술 > 수치계산 > 최적화 알고리즘 | 익명 | 2025-09-07 | 조회수 36

# 뉴턴 방법 ##요 **뉴턴 방법**(Newton Method), 또는 **뉴턴-랍슨 방법**(Newton-Raphson Method)은 비선형 방정식의 근을 수치적으로 근사하는 데 사용되는 강력한 반복 최적화 알고리즘. 이 방법은 미분 가능한 함수에 대해 초기 추정값에서 출발하여 접선을 이용해 점차 정확한 해에 수렴하도록 설계되어 있으며, 특히 수치...

다변수 체인 규칙

수학 > 다변수 미적분학 > 체인 규칙 | 익명 | 2025-09-07 | 조회수 42

# 다변수 체인 규칙 다변수 체인 규칙(Multivariable Chain Rule)은 다변수 미적분학에서 중요한 도구 중 하나로, **여러 변수에 의존하는 함수의 합성 함수를 미분할 때 사용되는 법칙입니다. 이 규칙은 단일 변수 함수의 체인 규칙을 다변수 함수로 확장한 것으로, 물리학, 공학, 경제학 등 다양한 분야에서 함수의 변화율을 분석할 때 핵심적...

라플라스 방정식

수학 > 미적분학 > 타원형 방정식 | 익명 | 2025-09-07 | 조회수 34

# 라플라스 방정식 라플라스 방정식(Laplace's Equation)은 수학, 특히 편미분방정식과 수리물리학에서 매우 중요한할을 하는 타원형 편미분방정식의 대표적인 예입니다. 이 방정식은 정적인리적 현상, 즉 시간에 따라 변하지 않는 평형 상태를 기술하는 데 널리 사용되며, 전기학, 중력장, 유체역학, 열전도 등 다양한 분야에서 등장합니다. 라플라스 방...

헤시안 행렬

기술 > 수학 > 선형대수학 | 익명 | 2025-09-07 | 조회수 38

# 헤시안 행렬 헤시안 행렬(Hessian Matrix)은 다변수 실수값 함수의 **이계도함수**(second-order partial derivatives)를 정사각형 행렬 형태로 배열한 것으로, 함수의 국소적 곡률 정보를 제공하는 중요한 수학적 도구입니다. 선형대수학과 최적화 이론, 머신러닝, 물리학 등 다양한 분야에서 널리 사용되며, 특히 함수의 극...

단진자

물리학 > 고전역학 > 진동 현상 | 익명 | 2025-09-07 | 조회수 49

# 단진자 단진자(Simple Pendulum)는 고역학에서 진동 현상을 이해 데 핵심적인 모델 중 하나이다. 이상적인 조건 작동하는 단진 질량을 가진 물체(진자추)가 무질량이고 늘이지 않는 실에 매달려 중력의 영향을 받아 진동하는 시스템을 의미한다. 이 모델은 진동 운동의 기본 원리를 설명하고, 조화 운동과 관련된 수학적 분석을 가능하게 하며, 물리학 ...

위상수학

수학 > 위상수학 > 일반 위상 | 익명 | 2025-09-06 | 조회수 34

# 위상수학 ## 개요 **위상수학**(topology)은 기하학의 한 분야로,형이나 공간의 **연속적인 변형** 아래에서 불변인 성질을 연구하는 수학의 분야이다. 위상수학에서는 길이, 각도, 면적과 같은 정량적인 기하학적 속성보다는, 공간의 **연결성**, **경계**, **연속성**, **열림과 닫힘**과 같은 질적인 성질에 주목한다. 예를 들어, ...

최적화

기술 > 데이터과학 > 최적화 알고리즘 | 익명 | 2025-09-06 | 조회수 37

# 최적화 ## 개요 최적화(Opt)는 주어진 조건에서 가장 좋은 해를 찾는 과정을 의미하며, 데이터과학 기계학습, 공학 경제학 등 다양한 분야에서 핵심적인 역할을 한다.과학에서는 모델의 예측 성능을 향상시키기 위해 손실 함수(Loss Function)를 최소화, 제약 조건을 만족하면서 목표 함수를 극대화/극소화하는 작업이 자주 발생한다. 최적화 알고리...

변수분리법

수학 > 미분방정식 > 해법 | 익명 | 2025-09-05 | 조회수 44

# 변수분리법 변수분리법(Separation of)은 미분방정식 풀기 위한 가장 기초적이면서도 강력한 해법 중 하나로, 독립변수와 종속변수를 각각의 항으로 분리하여 양변을 적분함으로써 해를 구하는 방법이다. 이 방법은 특히 **일계 상미분방정식**(ODE)과 일부 **편미분방정식**(PDE)에 널리 사용되며, 해석적 해를 구할 수 있는 경우가 많아 물리학...

연쇄 법칙

교육 > 수학 > 기하학 | 익명 | 2025-09-05 | 조회수 52

# 연쇄 법칙 ## 개요 **연쇄 법칙**( Rule)은 미적분학에서 합성함수의 도함수를 구하는 데 사용되는 핵심적인 법칙이다. 특히 기하학과 수학반에서 곡선, 곡면, 다변수 함수의 기울기와 변화율을 분석할 때 중요한 역할을 한다. 연쇄 법칙은 단순한 함수의 미분을 넘어서, 복잡한 함수 구조를 해석하고 계산하는 데 필수적인 도구로, 고등학교 수학부터 대...

고계 도함수

교육 > 수학 > 미적분학 | 익명 | 2025-09-05 | 조회수 41

# 고계 도함수 ## 개요 고계 도함수(higher-order derivatives)는 함수의 도함수를 다시 미분하여 얻어지는 도함수를 말한다. 가장 기본적인 도함수인 **1계 도함수**(first derivative)는 함수의 순간 변화율을 나타내며, 이 도함수를 다시 미분하면 **2계 도함수**(second derivative), 또 이를 미분하면 ...

체인 규칙

교육 > 수학 > 미적분학 | 익명 | 2025-09-05 | 조회수 39

# 체인 규칙 ## 개요 **체인 규칙**(Chain Rule)은 미적분학에서합성함수**(composite function)의 도함수를 구하는 데 사용되는 핵심적인 미분 법칙이다. 두 개 이상의 함수가 합성된 형태, 즉 $ y = f(g(x)) $ 와 같은 함수의 변화율을 계산할 때 매우 유용하며, 고등 수학 및 응용 과학 전반에서 빈번히 사용된다. 체...

수직 점근선

과학 > 수학 > 미적분학 | 익명 | 2025-09-05 | 조회수 41

# 수직 점근선 ## 개요 수직 점근선(vertical asymptote)은 함수의프가 특정 수직에 무한히까워지면서 그을 지나지 않는 현상을 말. 수직 점선은 함수가 정의되지 않거나 무한대로 발산하는 점에서 발생하며, 주로 유리함수, 로그함수, 삼각함수 등의 함수에서 관찰된다. 수직 점근선은 함수의 극한 성질을 이해하고, 그래프의 형태를 분석하는 데 중...