검색 결과

검색어를 입력하세요.

임계점

수학 > 미적분학 > 미분학 | 익명 | 2025-09-16 | 조회수 0

# 임계점 ## 개요 임계점(臨界, 영어: critical point) 미분학에서 함수의 국소적 성질을 분석하는 데 핵심적인 개념이다. 함수의 그래프에서 극값(극대 또는 극소)이 존재할 수 있는 후보 지점으로, 함수의 변화율이 0이 되거나 미분이 존재하지 않는 점을 의미한다. 임계점은 함수의 증가와 감소가 전환되는 지점, 즉 극값을 찾는 데 매우 중요한...

변곡점

수학 > 미적분학 > 미분학 | 익명 | 2025-09-13 | 조회수 4

# 변곡점 ## 개요 변곡점(變曲點, inflection point)은 함수 그래프가 **오목에서 볼록으로**, 또는 **볼록에서 오목으로** 변하는 지점을 의미한다. 즉, 함수의 **곡률**(curvature)이 부호를 바꾸는 점으로, 그래프의 형태가 변하는 전환점이라 할 수 있다. 변곡점은 미분학에서 함수의 그래프를 분석하고 해석하는 데 중요한 역할...

PDF

과학 > 통계학 > 확률분포 | 익명 | 2025-09-10 | 조회수 6

# PDF ## 개요 PDF는 " Density Function"의 약자로, 한국어로는 **확률밀도함수**(確率密度函數라고 한다. 통학과 확률론에서 연속 확률변수의 확률 분포를 설명하는 데 핵심적인 역할을 하는 함수이다. PDF는 특정 값에서 확률변수가 나타날 **상대적인 가능성**을 나타내며, 연속 확률변수의 확률을 구할 때는 특정 구간에 대한 함수의...

다변수 체인 규칙

수학 > 다변수 미적분학 > 체인 규칙 | 익명 | 2025-09-07 | 조회수 9

# 다변수 체인 규칙 다변수 체인 규칙(Multivariable Chain Rule)은 다변수 미적분학에서 중요한 도구 중 하나로, **여러 변수에 의존하는 함수의 합성 함수를 미분할 때 사용되는 법칙입니다. 이 규칙은 단일 변수 함수의 체인 규칙을 다변수 함수로 확장한 것으로, 물리학, 공학, 경제학 등 다양한 분야에서 함수의 변화율을 분석할 때 핵심적...

헤시안 행렬

기술 > 수학 > 선형대수학 | 익명 | 2025-09-07 | 조회수 9

# 헤시안 행렬 헤시안 행렬(Hessian Matrix)은 다변수 실수값 함수의 **이계도함수**(second-order partial derivatives)를 정사각형 행렬 형태로 배열한 것으로, 함수의 국소적 곡률 정보를 제공하는 중요한 수학적 도구입니다. 선형대수학과 최적화 이론, 머신러닝, 물리학 등 다양한 분야에서 널리 사용되며, 특히 함수의 극...

가속도

과학 > 물리학 > 유체역학 | 익명 | 2025-09-05 | 조회수 6

# 가속도 ## 개요 **가속도**(acceleration)는 물체의 속도가 시간에 따라 변화하는 정도를 나타내는 물리량이다. 속도는 크기와 방향을 가지는 벡터이므로, 가속도 역시터량이며, 속도의 크기 변화뿐 아니라 방향 변화도 포함한다. 유체역학을 비롯한 물리학 전반에서 가속도는 운동을 설명하는 핵심 개념 중 하나이며, 뉴턴의 운동 법칙과 밀접한 관련...

고계 도함수

교육 > 수학 > 미적분학 | 익명 | 2025-09-05 | 조회수 5

# 고계 도함수 ## 개요 고계 도함수(higher-order derivatives)는 함수의 도함수를 다시 미분하여 얻어지는 도함수를 말한다. 가장 기본적인 도함수인 **1계 도함수**(first derivative)는 함수의 순간 변화율을 나타내며, 이 도함수를 다시 미분하면 **2계 도함수**(second derivative), 또 이를 미분하면 ...

나눗셈 규칙

기술 > 수학 > 미적분학 | 익명 | 2025-09-05 | 조회수 4

# 나눗셈 규칙 나눗셈 규칙(Division Rule)은 미적분학에서 두 함수의 **비**(ratio)로 표현된 함수를 미분할 때 사용하는 중요한 미분 법칙 중 하나입니다. 이 규칙은 곱셈 규칙(Product Rule)과 함께 초월함수, 유리함수 등의 도함수를 구하는 데 핵심적인 역할을 하며, 고등학교 수학에서 대학 수준의 해석학까지 널리 활용됩니다. ...

체인 규칙

기술 > 수학 > 미적분학 | 익명 | 2025-07-30 | 조회수 12

# 체인 규칙 ## 개요 체인 규칙(Chain Rule)은 미적분학에서 합성 함수의 도함수를 구하는 핵심적인 방법론입니다. 이 규칙은 외부 함수와 내부 함수의 변화율을 곱하여 전체 함수의 변화율을 계산하는 방식으로, 과학 및 공학 분야에서 복잡한 함수의 미분을 단순화하는 데 널리 사용됩니다. 예를 들어, $ f(g(x)) $ 형태의 함수에서 $ x $에 ...

복합함수

교육 > 수학 > 미적분학 | 익명 | 2025-07-16 | 조회수 35

# 복합함수 ## 개요 복합함수(composite function)는 수학에서 두 함수를 결합하여 새로운 함수를 생성하는 방법이다. 이 개념은 미적분학, 해석학, 공학 등 다양한 분야에서 핵심적인 역할을 하며, 특히 복잡한 수식의 도함수 계산에 필수적이다. 복합함수는 하나의 함수의 결과를 다른 함수에 입력으로 사용하는 방식으로 정의되며, 이는 함수의...

곱셈 규칙

교육 > 수학 > 미적분학 | 익명 | 2025-07-16 | 조회수 23

# 곱셈 규칙 (Product Rule) ## 개요 곱셈 규칙은 미적분학에서 두 함수의 곱을 미분할 때 사용하는 기본적인 도함수 계산법이다. 이 규칙은 단순히 각 함수를 별도로 미분한 후 곱하는 것이 아니라, **첫 번째 함수의 도함수와 두 번째 함수의 곱**과 **첫 번째 함수와 두 번째 함수의 도함수의 곱**을 더해야 한다는 점에서 중요하다. 이 규칙...

극한

교육 > 수학 > 미적분학 | 익명 | 2025-07-16 | 조회수 44

# 극한 ## 개요 극한(limit)은 수학에서 함수의 행동을 분석하는 데 핵심적인 개념으로, 특정 점에 가까운 입력값에 대한 출력값의 추세를 나타냅니다. 미적분학의 기초가 되며, 도함수와 적분의 정의에 필수적이며, 물리학, 공학 등 다양한 분야에서 응용됩니다. 극한은 수렴과 발산을 이해하는 데 중요한 역할을 하며, 함수의 연속성, 미분 가능성 등...

미분법

교육 > 수학 > 미적분학 | 익명 | 2025-07-16 | 조회수 31

# 미분법 ## 개요 미분법은 수학에서 함수의 변화율을 분석하는 기초적인 도구로, 미적분학의 핵심 주제 중 하나이다. 이는 특정 점에서의 순간 변화량(도함수)을 계산하여 함수의 성질을 탐구하는 방법으로, 물리학, 공학, 경제학 등 다양한 분야에서 응용된다. 미분법은 17세기 뉴턴과 라이프니츠에 의해 독립적으로 개발되었으며, 현대 수학의 기초를 형성하는 중...

도함수

교육 > 수학 > 미적분학 | 익명 | 2025-07-16 | 조회수 31

# 도함수 ## 개요 도함수(derivative)는 수학에서 함수의 변화율을 나타내는 개념으로, 미적분학의 핵심 주제 중 하나입니다. 특정 점에서의 순간적인 변화율이나 기울기를 계산하는 데 사용되며, 물리학, 공학, 경제학 등 다양한 분야에서 응용됩니다. 도함수를 통해 함수의 최대/최소값, 곡선의 기울기, 가속도 등을 분석할 수 있습니다. --- ##...

도함수

기술 > 수학 > 미적분학 | 익명 | 2025-07-16 | 조회수 18

# 도함수 ## 개요 도함수(derivative)는 수학에서 함수의 변화율을 나타내는 개념으로, 미적분학의 핵심 주제 중 하나이다. 특정 점에서의 순간적인 변화율이나 곡선의 접선 기울기를 계산하는 데 사용된다. 도함수는 물리학, 공학, 경제학 등 다양한 분야에서 응용되어 중요한 역할을 한다. ## 정의와 수학적 표현 ### 극한을 통한 정의 도함수는 함...

미적분학

교육 > 수학 > 고등수학 | 익명 | 2025-07-15 | 조회수 34

# 미적분학 ## 개요 미적분학은 수학의 중요한 분야로, 변화율과 누적량을 연구하는 학문이다. 고등학교 수학에서 필수적인 내용으로, 함수의 극한, 도함수, 적분 등을 다루며 과학, 공학, 경제학 등 다양한 분야에 응용된다. 이 문서는 미적분학의 기초 개념부터 실제 적용까지 체계적으로 설명한다. --- ## 1. 미적분학의 역사와 개발 ### 1.1 고...