검색 결과

"거듭제곱"에 대한 검색 결과 (총 7개)

미분법

교육 > 수학 > 미적분학 | 익명 | 2025-07-16 | 조회수 23

# 미분법 ## 개요 미분법은 수학에서 함수의 변화율을 분석하는 기초적인 도구로, 미적분학의 핵심 주제 중 하나이다. 이는 특정 점에서의 순간 변화량(도함수)을 계산하여 함수의 성질을 탐구하는 방법으로, 물리학, 공학, 경제학 등 다양한 분야에서 응용된다. 미분법은 17세기 뉴턴과 라이프니츠에 의해 독립적으로 개발되었으며, 현대 수학의 기초를 형성하는 중...

도함수

교육 > 수학 > 미적분학 | 익명 | 2025-07-16 | 조회수 18

# 도함수 ## 개요 도함수(derivative)는 수학에서 함수의 변화율을 나타내는 개념으로, 미적분학의 핵심 주제 중 하나입니다. 특정 점에서의 순간적인 변화율이나 기울기를 계산하는 데 사용되며, 물리학, 공학, 경제학 등 다양한 분야에서 응용됩니다. 도함수를 통해 함수의 최대/최소값, 곡선의 기울기, 가속도 등을 분석할 수 있습니다. --- ##...

도함수

기술 > 수학 > 미적분학 | 익명 | 2025-07-16 | 조회수 11

# 도함수 ## 개요 도함수(derivative)는 수학에서 함수의 변화율을 나타내는 개념으로, 미적분학의 핵심 주제 중 하나이다. 특정 점에서의 순간적인 변화율이나 곡선의 접선 기울기를 계산하는 데 사용된다. 도함수는 물리학, 공학, 경제학 등 다양한 분야에서 응용되어 중요한 역할을 한다. ## 정의와 수학적 표현 ### 극한을 통한 정의 도함수는 함...

대수학

교육 > 수학 > 대수학 | 익명 | 2025-07-16 | 조회수 12

# 대수학 ## 개요 대수학(algebra)은 수학의 한 분야로, 수와 기호를 사용하여 수량 간의 관계를 추상화하고 일반화하는 학문이다. 이는 단순한 계산을 넘어 변수, 방정식, 함수 등 복잡한 구조를 탐구하며, 과학, 공학, 컴퓨터 과학 등 다양한 분야에서 필수적인 도구로 활용된다. 대수학은 고대부터 현대까지 수많은 수학자들의 연구를 통해 발전해왔으며,...

연산

교육 > 수학 > 기초수학 | 익명 | 2025-07-15 | 조회수 11

# 연산 ## 개요 연산은 수학에서 숫자나 대상 간의 관계를 정의하고 계산하는 기본적인 행위로, 기초수학 교육에서 핵심 개념이다. 덧셈, 뺄셈, 곱셈, 나눗셈과 같은 산술 연산부터 거듭제곱, 제곱근, 순서의 법칙에 이르기까지 다양한 형태가 존재하며, 이는 문제 해결 능력과 논리적 사고를 기르는 데 필수적이다. 본 문서에서는 연산의 정의, 종류, 성...

미적분학

교육 > 수학 > 고등수학 | 익명 | 2025-07-15 | 조회수 25

# 미적분학 ## 개요 미적분학은 수학의 중요한 분야로, 변화율과 누적량을 연구하는 학문이다. 고등학교 수학에서 필수적인 내용으로, 함수의 극한, 도함수, 적분 등을 다루며 과학, 공학, 경제학 등 다양한 분야에 응용된다. 이 문서는 미적분학의 기초 개념부터 실제 적용까지 체계적으로 설명한다. --- ## 1. 미적분학의 역사와 개발 ### 1.1 고...

수학

교육 > 수학 > 기초수학 | 익명 | 2025-07-15 | 조회수 39

# 수학 ## 개요 수학은 양, 구조, 공간 및 변화와 같은 추상적 개념을 탐구하는 체계적인 학문이다. 고대부터 현대까지 인간의 사고와 과학 기술 발전에 깊이 관여하며, 자연과학, 공학, 경제학 등 다양한 분야에서 필수적인 도구로 활용된다. 수학은 **기초수학**과 **심화수학**으로 나뉘며, 본 문서에서는 기초수학의 핵심 개념과 역사적 배경을 중심으로 ...