# 특성방정식 ## 개요 **특성정식**(Characteristic Equation)은 선대수학에서 정방행렬(사각행렬)의 고값(Eigenvalue을 구하기 위해 사용 핵심적인 개념이다. 주어진 정방행렬 $ A $에 대해, 고유값은렬의 선형 변에서 방향이 변 않는 벡터(유벡터)에응하는 스칼 값으로 정의며, 이를 구하는 과정에서 특성방정식이 등한다. 특성정...
검색 결과
검색어를 입력하세요.
# 선형 연립방정 선형 연립방정식( System of Equations)은 여러 개의 선형 방정식이 동시에 성립해야 하는 조건을 나타내는학적 구조로, 선형대수학의 핵심 주제 중 하나입니다. 이는 과학, 공학, 경제학, 컴퓨터 과학 등 다양한 분에서 현실 세계의 문제를 모델링하고 해를 구하는 데 널리 사용됩니다. 본 문서에서는 선형 연립방정식의 정의 표현 ...
# 복소수 복소수(複素數, Complex)는 실수부와 허부로 구성된 수 체계로 수학, 물리학, 공학 등 다양한 분야에서 핵심적인 역할을 한다.소수는 차원 평면상 점으로 시각화할 수, 복소해석학(Complex Analysis의 기초를성한다. 이 문서 복소수의 정, 대수적 성질, 기하적 표현 연산법, 그리고 응용 분야에 대해 체계적으로 설명한다. --- ...
# 복소근 ## 개요 복근(複素, Complex Root)이란정식의 해 실수부와 허부를 모두 가질 수 있는 복소수 형태 근을 의미한다. 특히 실계수 다방정식에서 실수 범위 내 해를 찾을 수 없을 때, 복수 범위로 확장하면 해가 존재하는 경우가 많으며, 이러한 해를 복소근 한다. 복소근은 대학의 핵심 개념 중 하나로,16세기 이후 복소수의 체계적인 도입과...
분배법칙## 개요 분배법칙分配法則, Distributive Law은 수학, 기초대수학에서 매우 중요한 성 중 하나로, 덧셈과 곱셈의 관계를 설명하는 법칙입니다. 법칙은 수을 전개하거나 인분해할 때 핵심적인 역할을 하며, 초등학교 수학 처음 소개된 후 중등 및 고등 수까지 폭넓게 적용됩니다분배법칙 괄호 안의 항에 괄호 밖의 수를 곱할 때, 각 항에 개별적으...
가우스 소법 ## 개요 **가스 소거법**(Gaussianination)은 선형 연립방정을 풀기 위한 가장 대표적인 알고리즘 중 하나로, 행렬을 **기약 사다리꼴**(reduced row echelon form) 또는사다리꼴row echelon form)로 변환하여 해를 구하는 방법이다. 이 방법은 독일의 수학자 카를 프리드리히 가우스의 이름을 따 명명...
# 완전제곱식 ## 개요 **완전제식**(完全平方式, Perfect Trinomial)은 대수학 자주 등장하는 특수 다항식의 일종으로, 어떤 이항식의 제곱으로 표현할 수 있는 삼항식을 의미한다. 즉, 두 항의 합 또는 차를 제곱한 결과로 나타나는 다항식이다. 완전제곱식은 인수분해, 방정식 풀이, 제곱근 계산, 이차함수의 꼭짓점 찾기 등 다양한 수학적 응...
행렬식 행렬식**(式, Determinant)은 선형대수학에서 정방행렬(square matrix)에 대응되는 하나의 스칼라 값으로, 행렬의 여러 중요한 성질을 판별하는 데 핵심적인 역할을 한다. 행렬식은 행렬이 가역(invertible)인지 여부, 선형 방정식의 해의 존재성, 벡터 공간에서의 기하학적 해석(예: 부피 변화율) 등과 밀접한 관련이 있다. 이...
# 삼각 부등식 ## 개요 **삼각 부등식**(Triangleequality)은 선대수학에서 벡 공간의 노름orm)이 만해야 하는 핵심 성질 중 하나로, 두 벡터의 합의 크기가 각 벡터의 크기의 합보다 작거나 같다는 원리를 수학적으로 표현한 것이다. 이 부등식은 기하학적 직관에서 유래되었으며, 삼각형에서 임의의 두 변의 길이의 합이 세 번째 변의 길이보...
# 복소근 **복소근**(complex root)은 복소수 범위에서 특정 방식의 해가 되는 복소수를 의미한다. 특히 다항방정식, 지수방정식, 삼각함수 방정식 등에서 실수 범위를 넘어서 해를 구할 때 등장하며, 복소해석학에서 중요한 개념 중 하나이다. 복소근은 실수부와 허수부로 구성된 복소수 형태로 표현되며, **대수학의 기본정리**(Fundamental ...
# 대입법 **대입법**(代入法, Substitution Method)은 방정식 또는 연립방정식을 풀기 위한 기본적이고 효과적인 대수적 기 중 하나입니다. 두 개 이상의 미수가 포함된 연립일차방정식을 해결할 때 자주 사용되며, 한 변수를 다른 변수로 표현하여 다른 방정식에 대입함으로써지수의 수를 줄이고 문제를 단순화하는 방식으로 작동합니다. 이 방법은 중...
# L2 노름## 개요 **L2 노름L2 norm) 벡터 공간에서 벡터의 크기 또는 길이를 측정하는 방법 중 하나로, 선형수학, 기계학습, 신호, 수치해 등 다양한 분야에서 널리 사용되는 중요한 개념이다. L2 노름은 유클리드 노름(Euclidean norm)이라고도 하며, 일반적인 직관적인 '' 개념과 일한다. 이 문서에서는2 노름의의, 수학 표현, 성...
# 선형 연산 ## 개요 선형 연산(Linear Operation)은 데이터 과학과 분석 분야에서 핵심적인 수학적 도구로, 선형 대수학(Linear Algebra)의 기본 원리를 기반으로 합니다. 이 연산은 행렬, 벡터, 스칼라 등을 활용해 데이터의 구조를 변환하거나 패턴을 추출하는 데 사용되며, 머신러닝, 통계 분석, 최적화 문제 등 다양한 분야에 적용...
# 대수학 ## 개요 대수학(algebra)은 수학의 한 분야로, 수와 기호를 사용하여 수량 간의 관계를 추상화하고 일반화하는 학문이다. 이는 단순한 계산을 넘어 변수, 방정식, 함수 등 복잡한 구조를 탐구하며, 과학, 공학, 컴퓨터 과학 등 다양한 분야에서 필수적인 도구로 활용된다. 대수학은 고대부터 현대까지 수많은 수학자들의 연구를 통해 발전해왔으며,...
# 수학 ## 개요 수학은 양, 구조, 공간 및 변화와 같은 추상적 개념을 탐구하는 체계적인 학문이다. 고대부터 현대까지 인간의 사고와 과학 기술 발전에 깊이 관여하며, 자연과학, 공학, 경제학 등 다양한 분야에서 필수적인 도구로 활용된다. 수학은 **기초수학**과 **심화수학**으로 나뉘며, 본 문서에서는 기초수학의 핵심 개념과 역사적 배경을 중심으로 ...