# 수렴 속도 수렴 속도(Convergence Rate) 수치최적화 알고리 최적해에 접근하는 속도를 수학적으로 정의한 개념이다. 최적화 문제를 해결하는 과에서 반복적인 계산을 통해 해를 점진적으로 개선하는데, 이 과정에서 해가 실제 최적해에 얼마나 빠르게 가까워지는지를 평가하는 척도가 바로 수렴 속도이다. 수렴 속도는 알고리즘의 효율성과 실용성을 판단하는...
검색 결과
검색어를 입력하세요.
# 뉴턴의 만유인력 법칙 ## 개요 **뉴턴의 만유인력칙**(Newton's of Universal Gravitation은 모든 질량 가진 물체에 항상 인력이용한다는 것을 설명하는 고전역학의 핵심 법칙 중 하나이다. 이 법칙은17세기 영의 물리학 아이작 뉴턴(Is Newton)이 687년판한 저서 『자연철학의 수학적 원리』(*Philosophiæ Nat...
자연철학의학적 원리## 개요 《연철학의학적 원리》라틴어: *Philosophiæ Naturalis Principia Mathematic*, 영어: *Mathematical Principles of Natural Philosophy*)는국의 과학자 아이작 뉴턴(Isaac Newton)이 687년에 출판한 과학 서적이며, 현대 물리학과 천문학의 기초를 마련한...
# 중력 상수 ## 개요 **중력 상수**(avitational Constant), 종종뉴턴의 중 상수**(Newtonian constant of gravitation) 또는 기호로 **G**로 표기되는 이 값 물리학에서 만유인력의 세기를 결정하는 기본 물리 상수이다. 중력 상수는 아이작 뉴턴이 1687년에 발표한 만유인력의 법칙에서 처음 도입되었으며,...
# 중력 상수 중력 상수(G)는 물리학에서 뉴턴의 만유인력 법에 등장하는 기본 상수로, 두 물체 사이의 중력적 상호작용의 세기를 결정하는 데 핵심적인 역할을 한다. 이 상수는 우주의 기본 상수 중 하나로 간주되며, 고전 역학에서부터 천체 물리학, 우주론에 이르기까지 다양한 분야에서 활용된다. 본 문서에서는 중력 상수의 정의, 역사, 측정 방법, 물리적 의...
# 선형 가속도 ##요 선형 가속도(Linear Acceleration)는 물체 직선 방향으로 속도 변화시키는 비율을 나타내는 물리이다. 운동학(Mechan)에서 가속는 속도의 시간에 대한 변화율로 정의되며, 특히 방향이 일정한 직선 운동에서의 가속도를 **선형 가속도**라고 부른다. 이는 회전 운동에서 발생하는 각가속도(Angular Accelerat...
# 뉴턴 방법 ##요 **뉴턴 방법**(Newton Method), 또는 **뉴턴-랍슨 방법**(Newton-Raphson Method)은 비선형 방정식의 근을 수치적으로 근사하는 데 사용되는 강력한 반복 최적화 알고리즘. 이 방법은 미분 가능한 함수에 대해 초기 추정값에서 출발하여 접선을 이용해 점차 정확한 해에 수렴하도록 설계되어 있으며, 특히 수치...
# 헤시안 행렬 헤시안 행렬(Hessian Matrix)은 다변수 실수값 함수의 **이계도함수**(second-order partial derivatives)를 정사각형 행렬 형태로 배열한 것으로, 함수의 국소적 곡률 정보를 제공하는 중요한 수학적 도구입니다. 선형대수학과 최적화 이론, 머신러닝, 물리학 등 다양한 분야에서 널리 사용되며, 특히 함수의 극...
# 가속도 ## 개요 **가속도**(acceleration)는 물체의 속도가 시간에 따라 변화하는 정도를 나타내는 물리량이다. 속도는 크기와 방향을 가지는 벡터이므로, 가속도 역시터량이며, 속도의 크기 변화뿐 아니라 방향 변화도 포함한다. 유체역학을 비롯한 물리학 전반에서 가속도는 운동을 설명하는 핵심 개념 중 하나이며, 뉴턴의 운동 법칙과 밀접한 관련...
# BFGS **BFGS**(Broyden–Fletcher–Goldfarb–Shanno 알고리즘은 비선형 최적화 문제에서 널리 사용되는 준뉴턴(Quasi-Newton) 방법 중 하나로, 목적 함수의 최소값을 반복적으로 탐색하는 데 효과적입니다. 특히, 목적 함수의 2차 미분(헤시안 행렬)을 직접 계산하지 않고도 뉴턴 방법과 유사한 수렴 성능을 달성할 수 ...
Okay, I to create a professional Korean document about "정적분" (Definite Integral) under the category of Calculus in Mathematics. Let me start by understanding the structure and requirements given. Fir...
# 미적분학 ## 개요 미적분학은 수학의 중요한 분야로, 변화율과 누적량을 연구하는 학문이다. 고등학교 수학에서 필수적인 내용으로, 함수의 극한, 도함수, 적분 등을 다루며 과학, 공학, 경제학 등 다양한 분야에 응용된다. 이 문서는 미적분학의 기초 개념부터 실제 적용까지 체계적으로 설명한다. --- ## 1. 미적분학의 역사와 개발 ### 1.1 고...