# 로그함수 로그함수(logarithmic function) 지수함수의 역함로 정의되는 수학적 함수로, 수학 전반과 과학, 공학, 경제학 등 다양한 분야에서 중요한 역할을 한다. 로그함수는 큰 수를 다루거나 지수적인 증가·감소를 분석할 때 유용하며, 특히 데이터의 스케일을 조정하거나 복잡한 곱셈을 덧셈으로 변환하는 데 자주 사용된다. 이 문서에서는 로그함...
검색 결과
"곱셈"에 대한 검색 결과 (총 85개)
# FPGA ## 개요 **PGA**(Field-Programmable Gate Array, 현장 프래머블 게이트 어레이)는 사용자가 필요에 따라 하드웨어 수준에서 논리 회로를 재구성할 수 있는도체 장치입니다.는 고정된능을 가진 전통적인 ASIC(Application-Specific Integrated Circuit)과 달리, 프로그래밍을 통해 다양한 ...
# 사칙연산 ## 개요 **사칙연산**(四演算)은 수학의 기본이 되는 네 가지 연산인 **덧셈**(加法), **뺄셈**(減法), **셈**(乘法), **나눗셈**(除法) 총칭하는 용어입니다. 이 네 가지 연은 수를 다루는 모든 수학적 활동의 기초가 되며, 초등 수학부터 고등 수학, 그리고 실생활의 계산 문제까지 널리 사용됩니다. 사칙연산은 자연수, 정수...
# 텐서 ## 개요 **텐서**(Tensor)는 수학 및 컴퓨터 과학, 특히 머신러닝과 딥러닝 분야 핵심적인 개념, 다차원 배열 일반화한 수적 구조입니다 텐서는 스칼, 벡터,렬의 개념을 확장하여 N차원 데이터를 표현할 수 있으며, 현대 인공지능(AI) 시스템의 연산 기반을 이루는 중요한 **데이터 구조**입니다. 텐서는 주로 딥러닝 프레임워크(예: Te...
# BLIS Framework **BLIS Framework**(BL-like Library Instantiation Software)는 고성능 선형 대수 연산을 위한 오픈소스 소프트웨어 라이브러리로 BLAS(Basic Linear Subprograms)와사한 인터페이스를 제공하면서도 보다 유연하고 최적화된 구현을 가능하게 하는 프레임워크입니다. BLIS...
# 희소 행렬 ## 개요 **희소 행렬**(Sparse)은 행렬의 대부분의소가 0인 특수한 형태의 행렬을 의미합니다. 일반적으로 수치 계산, 머신러닝, 그래프 이론, 자연어 처리, 네트워크 분석 등 다양한 데이터 과학 분야에서 대규모 데이터를 효율적으로 처리하기 위해 사용됩니다. 희소 행렬은 데이터의 크기가 크지만 실제로 유의미한 정보(0이 아닌 값)를...
# BLAS ## 개요 **BLAS**(Basic Linear Algebra Subprograms, 기본 선형대수 서브프로그램)는 벡터와 행렬 연산을 위한 표준 인터페이스를 정의한 소프트웨어 라이브러리입니다. 주로 수치해석, 과학기술 계산, 머신러닝, 고성능 컴퓨팅(HPC) 분야에서 핵심적인 역할을 하며, 선형대수 계산의 효율성과 성능을 극대화하는 데 ...
# 선형 연산 ## 개요 선형 연산(Linear Operation)은 데이터 과학과 분석 분야에서 핵심적인 수학적 도구로, 선형 대수학(Linear Algebra)의 기본 원리를 기반으로 합니다. 이 연산은 행렬, 벡터, 스칼라 등을 활용해 데이터의 구조를 변환하거나 패턴을 추출하는 데 사용되며, 머신러닝, 통계 분석, 최적화 문제 등 다양한 분야에 적용...
# AEAD ## 개요 AEAD(**Authenticated Encryption with Associated Data**)는 암호화와 인증을 동시에 제공하는 암호화 모드입니다. 전통적인 암호화 방식이 데이터 기밀성만 보장했다면, AEAD는 **기밀성**, **무결성**, **신원 인증**을 통합적으로 처리합니다. 이 문서에서는 AEAD의 개념, 작동 원리...
# 연속성 ## 개요 **연속성**(Continuity)은 미적분학에서 함수의 중요한 성질 중 하나로, 함수 그래프가 끊김 없이 매끄럽게 연결되어 있음을 의미합니다. 이 개념은 극한과 밀접하게 연관되어 있으며, 함수의 행동을 예측 가능하게 만드는 기초가 됩니다. 연속성은 수학적 분석뿐만 아니라 물리학, 공학, 경제학 등 다양한 분야에서 모델링에 필수적인 ...
# 체인 규칙 ## 개요 체인 규칙(Chain Rule)은 미적분학에서 합성 함수의 도함수를 구하는 핵심적인 방법론입니다. 이 규칙은 외부 함수와 내부 함수의 변화율을 곱하여 전체 함수의 변화율을 계산하는 방식으로, 과학 및 공학 분야에서 복잡한 함수의 미분을 단순화하는 데 널리 사용됩니다. 예를 들어, $ f(g(x)) $ 형태의 함수에서 $ x $에 ...
# 연쇄법칙 (Chain Rule) ## 개요/소개 연쇄법칙(Chain Rule)은 미적분학에서 복합함수(composite function)의 도함수를 계산하는 기본적인 규칙이다. 두 함수 $ f(x) $와 $ g(x) $가 주어졌을 때, $ h(x) = f(g(x)) $로 정의된 복합함수의 도함수는 $ h'(x) = f'(g(x)) \cdot g'(x)...
# 나눗셈 규칙 ## 개요 나눗셈 규칙(Quotient Rule)은 미적분학에서 두 함수의 비(商)를 미분할 때 사용하는 기본적인 도함수 계산법이다. 이는 분자와 분모가 각각 다른 함수로 구성된 경우, 단순히 분자와 분모를 따로 미분한 후 나누는 것이 아니라, 특정 공식을 통해 정확하게 도함수를 구할 수 있도록 한다. 본 문서에서는 나눗셈 규칙의 ...
# 미분법 ## 개요 미분법은 수학에서 함수의 변화율을 분석하는 기초적인 도구로, 미적분학의 핵심 주제 중 하나이다. 이는 특정 점에서의 순간 변화량(도함수)을 계산하여 함수의 성질을 탐구하는 방법으로, 물리학, 공학, 경제학 등 다양한 분야에서 응용된다. 미분법은 17세기 뉴턴과 라이프니츠에 의해 독립적으로 개발되었으며, 현대 수학의 기초를 형성하는 중...
# 도함수 ## 개요 도함수(derivative)는 수학에서 함수의 변화율을 나타내는 개념으로, 미적분학의 핵심 주제 중 하나입니다. 특정 점에서의 순간적인 변화율이나 기울기를 계산하는 데 사용되며, 물리학, 공학, 경제학 등 다양한 분야에서 응용됩니다. 도함수를 통해 함수의 최대/최소값, 곡선의 기울기, 가속도 등을 분석할 수 있습니다. --- ##...
# 도함수 ## 개요 도함수(derivative)는 수학에서 함수의 변화율을 나타내는 개념으로, 미적분학의 핵심 주제 중 하나이다. 특정 점에서의 순간적인 변화율이나 곡선의 접선 기울기를 계산하는 데 사용된다. 도함수는 물리학, 공학, 경제학 등 다양한 분야에서 응용되어 중요한 역할을 한다. ## 정의와 수학적 표현 ### 극한을 통한 정의 도함수는 함...
# 대수학 ## 개요 대수학(algebra)은 수학의 한 분야로, 수와 기호를 사용하여 수량 간의 관계를 추상화하고 일반화하는 학문이다. 이는 단순한 계산을 넘어 변수, 방정식, 함수 등 복잡한 구조를 탐구하며, 과학, 공학, 컴퓨터 과학 등 다양한 분야에서 필수적인 도구로 활용된다. 대수학은 고대부터 현대까지 수많은 수학자들의 연구를 통해 발전해왔으며,...
# 유리수 ## 개요 유리수는 수학에서 중요한 개념으로, 두 정수의 비로 표현할 수 있는 수를 의미합니다. 이 문서에서는 유리수의 정의, 성질, 연산 방법, 역사적 배경 및 무리수와의 차이점을 체계적으로 탐구합니다. 유리수는 일상생활과 과학 기술 분야에서 넓게 활용되며, 수학 교육에서 기본적인 개념으로 자리 잡고 있습니다. --- ## 1. 정의 및 ...
# 정수 ## 개요 정수는 수학에서 가장 기본적인 숫자 집합 중 하나로, **0과 양의 정수, 음의 정수**를 포함합니다. 정수는 자연수(1, 2, 3, ...)와 그 반대 방향의 음의 정수(-1, -2, -3, ...) 그리고 0을 모두 포함하는 집합입니다. 이 문서에서는 정수의 정의, 성질, 역사적 배경, 연산 규칙, 실생활 적용 등을 체계적으로 탐구...
# 자연수 ## 개요 자연수는 수학에서 가장 기본적인 수 체계 중 하나로, **물체를 세거나 순서를 나타내는 데 사용되는 정수**입니다. 일반적으로 1부터 시작하는 경우가 많지만, 현대 수학에서는 0을 포함하는 정의도 널리 채택되고 있습니다. 자연수는 산술, 대수, 집합론 등 다양한 수학 분야에서 기초 자료로 활용되며, 교육 과정에서도 초등학교부터 체계적...