# DSP **DSP**(Digital Signal Processor, 디지털 신호 처리기)는 디지털 형태의 신호를 실시간으로 처리하도록 특화된 마이크로프로세서입니다. 일반적인 CPU와 달리, 음성, 오디오, 비디오, 통신 신호 등과 같은 연속적인 데이터 스트림을 고속으로 처리하는 데 최적화되어 있으며, 주로 실시간 처리가 요구되는 응용 분야에서 널리 사...
검색 결과
검색어를 입력하세요.
x87 FPU x87 FPU(Floating- Unit)는 x86 아처 기반의이크로프로서에서 부동수점 연산 수행하기 위해 설계 전용 하드웨어 계 장치이다. x86 프로서는 정수산만을 지원으며, 부동소점 연산은프트웨어 에뮬레이션을 통해 처리되었다. 그러나 성능 요구 높아짐에 따라 수학 연산 가속화하기 위한용 하드웨어인 x87 FPU가 개발되어86 시스템의 ...
# ADD **ADD** 어셈블리 언어에서 가장 기본적이고 핵심적인 산술 명령어 중 하나로, 두 개의 피연산자를 더하여 그 결과를 목적지 피연산자에 저장 역할을 한다 이 명령어는 대부분의 프로세서 아키텍처(CISC,ISC 등)에서 지원되며, CPU의 산 논리 장치U)를 통해 수행된다. ADD 명령어는 수치 계산, 메모리 주소 계산, 루프 제어 등 다양한 ...
# 부동소수점 연산 부동소수점 연산(Floating-point arithmetic)은 컴퓨터에서 실수를 표현하고 계산하기 위해 사용하는 수치 계산 방식이다. 이 방은 매우 크거나 매우 작은 수를 효율적으로 다룰 수 있도록 설계되어 있으며, 과학 계산, 공학 시뮬레이션, 그래픽 처리, 인공지능 등 다양한 분야에서 핵심적인 역할을 한다. 본 문서에서는 부동소...
# 모듈러 연산 **모듈러 연산**(Mod Arithmetic)은 정수론 핵심 개념 중로, 주어진수를 특정한(모듈러)로 나눈 나머지를 다루는 산술 체계입니다. 이 연산은 수학뿐 아니라 컴퓨터 과학, 암호학, 프로그래밍 등 다양한 분야 널리 활용되며, 특히 **시계 연산**(clock arithmetic)으로 비유되곤 합니다. 예를 들어, 12시간 시계에서...
# NumPy ## 개요 NumPy(Numerical Python의 약자는 파이썬에서 과학 계산과 데이터 분석을 수행하기 위한 핵심 라이브러리입니다. 특히 다차원 배열과 행렬 연산을 효율적으로 처리할 수 있도록 설계되어 있으며, 머신러닝, 통계 분석, 수치 시뮬레이션 등 다양한 분야에서 널리 사용됩니다. NumPy는 C 언어 기반으로 구현되어 있어 순수...
# 행렬 ## 개요 **행렬**(Matrix)은학, 특히 **형대수**(Linear)에서 핵심적인으로, 수치나 기호를 직사각형 형태로 배열하여 표현한 구조입니다.렬은 방정식의 계수를계적으로 표현하고, 선형 변환을 기술, 컴퓨터 그래픽스, 통계,신러닝 등 다양한 기술 분야에서 널리 활용됩니다. 행렬은 **행**(row)과 **열**(column)로 구성...
# 행렬-행렬 연산 행렬-행렬 연은 선형대수의 핵심 개념 중 하나로, 두 개 이상 행렬 간에할 수 있는 다양한 수학적 연산을 포함합니다. 이러한 연산 수치해석 컴퓨터 그래픽스, 기계학습, 물리학, 경학 등 다양한 분에서 널리 활용되며, 특히 데이터의 선형 변환과 시스템 해석에 핵심적인 역할을 합니다. 본 문서에서는 행렬 간의 주요 연산인 덧셈, 뺄셈, 곱...
# 수치 연산 개요 **수치 연산**(ical Computation) 수학적 문제를 근사적으로 해결하기 위해 실수나 부동소수점 수를 사용하여 계산을 수행하는 과정을 의미합니다. 이는 해석학적 방법으로 정확한 해를 구하기 어려운 복잡한 수학 문제, 특히 미분 방정식, 선형 대수, 적분, 최적화 등에 대해 컴퓨터를 이용해 근사해를 구하는 데 핵심적인 역할...
# AOCL **AMD Optimizing CPU Libraries**(AOCL)는 AMD 제공하는 고성능 컴퓨(HPC), 머신러닝, 과학 계산 및 데이터 분석 애플리케이션 성능을 최적화하기 위한 소프트웨 라이브러리 모음입니다. AOCL AMD의 x86-4 아키텍처 기반 프로세서, 특히 **EPYC**, **Ryzen**, **Threadripper** ...
가우스 소법 ## 개요 **가스 소거법**(Gaussianination)은 선형 연립방정을 풀기 위한 가장 대표적인 알고리즘 중 하나로, 행렬을 **기약 사다리꼴**(reduced row echelon form) 또는사다리꼴row echelon form)로 변환하여 해를 구하는 방법이다. 이 방법은 독일의 수학자 카를 프리드리히 가우스의 이름을 따 명명...
# 정규방정식 ## 개요 정규방정식(Normal Equation)은 **선형회귀**(Linear Regression) 문제를 해결하기 위한 해석적(analytical) 방법 중 하나로, 최소제곱법(Least Squares Method)을 사용하여 선형 모델의 계수를 직접 계산하는 수식이다. 이 방정식은 손실 함수인 **잔차 제곱합**(Sum of Squ...
# 선형대수 선형대수(Linear Algebra) 수학의 한 분야로, **벡터 공간**(vector spaces),선형 변환**(linear transformations), **행렬**(matrices), **연립일차방정식**(systems of linear equations) 등을 다룹니다. 현대학뿐 아니라 물리학, 컴퓨터 과학, 공학, 경제학, 통계학...
# numpy ## 개요 **NumPy**(Numerical Python의 약자)는 파이썬에서 과학적 계산과 데이터 분석을 위한 핵심 라이브러리 중 하나로, 고성능의 다차 배열 객체(`nd`)와 이를 효율 다루기 위한 수학적 함수 제공합니다. NumPy는 Python의 기본보다 훨씬 빠르고 메모리 효율적인 배열 연산을 가능하게 하며, 데이터과학, 기계학...
# 분수 ## 개요 분수(分數, fraction)는 하나의 수를 다른 수로 나눈 형태로 표현한 수 체계의 일종으로, 전체 중에서 일부를 나타낼 때 사용된다. 수학에서 분수는 유리수(rational number)의 기본 표현 방식 중 하나이며, 일상생활에서도 비율, 할인, 요리 레시피 등 다양한 상황에서 활용된다. 분수는 일반적으로 **분자**(numer...
# 공통 분모## 개요 **공통모**(Common Denominator)는수의 덧셈과 뺄셈을 수행할 때 필수적인 개념으로, 두 개 이상의 분수가 같은 분모를 가지도록 조정하는 과정에서 사용됩니다. 분모가 서로 다른 분수는 직접 계산할 수 없기 때문에, 공통 분모를 찾아 각 분수를 동등한 값으로 변환한 후 연산을 수행해야 합니다. 이 문서에서는 공통 분모의...
# 불리언 표현 불리언 표현식(Boolean Expression) 프로그래밍 조건의 참(true) 또는 거짓(false 여부를 판단하는 데 사용되는 핵심적인 개념입니다. 이는 조건문, 반복문, 논리 연산 등 다양한 프로그래밍 구조의 기초를 이루, 프로그램 흐름 제어에 핵심적인 역할 합니다. 이 문서에서는 불리언 표현식의 정의, 구성 요소, 사용 예시 및 ...
# 나눗셈 연산자 나눗셈 연산자는로그래밍 언어에서 두 수를 나누는 데 사용되는 산술 연산자의 일종으로, 주로 `/` 기호 표현됩니다. 이 연산 수학적 나눗셈을 프로그램 내에서 수행할 수 있게 하며, 다양한 데이터 타입과 언어별 특성에 따라 그 동작 방식이 다릅니다. 본 문서에서는 나눗셈 연산자의 기본 개념, 사용법, 언어별 차이점, 그리고 주의사항에 대해...
# 행렬-벡터 연산 행렬-벡터산은 선형대수의 핵심 개념 중 하나로, 데이터과학 머신러닝, 컴퓨터 그래픽스, 물리학 등 다양한 분야에서 광범위하게 활용됩니다. 특히 고차원 데이터를 처리하고 변환하는 데 있어 행렬과 벡터의 연산은 계산 효율성과 수학적 표현의 간결성을 제공합니다. 본 문서에서는 행렬-벡터 연산의 정의, 기본 연산 종류 계산 방법, 활용 사례 ...
# Basic Linear Algebra Subprograms **Basic Linear Algebra Subprograms**(BL)는 선형대수 계을 위한 기본적인 연산들을 표화한 인터페이스 사양이다. BLAS는 벡터와렬의 덧셈 스칼라 곱, 내적, 행렬-벡터 곱, 행렬-행렬 곱 등과 같은 수치 선형대수의 핵심 연산들을 정의하며, 과학 계산, 머신러닝, ...