# 등가원리 ## 개요 **등가원리**(Equivalence Principle)는 아인슈타인의 일반 상대성이론에서 핵심적인 개념 중 하나로, **중력과 가속도의 물리적 동등성**을 설명하는 원리이다. 이 원리는 중력을 단순한 힘으로 보기보다는 시공간의 기하학적 성질로 이해하는 데 결정적인 역할을 하며, 고전역학에서의 중력 개념을 근본적으로 전환시킨 계기...
검색 결과
검색어를 입력하세요.
# 질량 질량은 물리학에서 물체가 가진 물질의 양을 나타내는 기본적인 물리량으로, 관성과 중력의 성질을 결정짓는 핵심 개념이다. 일상생활에서 질량은 종종 무게와 혼동되지만, 물리학적으로는 명확한 차이가 있다. 질량은 시간과 공간, 에너지와 함께 우주의 기본 구성 요소를 이해하는 데 필수적인 개념이며, 고전역학부터 현대 물리학에 이르기까지 다양한 분야에서 ...
# 지수분포 지수분(**Exponential Distribution**) 통계학과률론에서 연속 확률분포 일종으로, 간의 **시간 간격**을 모델링하는 데 널리됩니다. 특히,아송 과정(Pson process)에서하는 사건 사이의 시간을 설명하는 적합한 분포로,뢰성 공학, 생존 분석, 대기 이론(Queueing theory) 등 다양한 응용 분야에서 중요한 ...
# 덧셈 ## 개요 **덧셈**(加法 addition)은 수학 가장 기본적인 연산 중 하나로, 두 개 이상의 수를 결합하여 총합을 구하는 과정을 의미한다. 기호로는 **+**(플러스 기호)를 사용하며, 예를 들어 $ 3 + 5 = 8 $과 같이 표현한다. 덧셈은 자연수에서 시작하여 정수, 유리수, 실수, 복소수 등 다양한 수 체계로 확장되며, 일상생활뿐...
# 로그함수 로그함수(logarithmic function) 지수함수의 역함로 정의되는 수학적 함수로, 수학 전반과 과학, 공학, 경제학 등 다양한 분야에서 중요한 역할을 한다. 로그함수는 큰 수를 다루거나 지수적인 증가·감소를 분석할 때 유용하며, 특히 데이터의 스케일을 조정하거나 복잡한 곱셈을 덧셈으로 변환하는 데 자주 사용된다. 이 문서에서는 로그함...
# 기하학 ## 개요 기하학(幾何學)은 수학의 한 분야로, 공간과 형태, 크기, 상호관계를 연구하는 학문이다. 고대부터 현대에 이르기까지 인간이 자연현상과 물리적 세계를 이해하기 위해 발전시킨 체계적인 지식으로, 공학, 물리학, 컴퓨터 과학 등 다양한 분야와 밀접한 연관을 가진다. 기하학은 도형의 성질을 탐구하는 동시에 수학적 추론과 논리를 활용해...
# 유리수 ## 개요 유리수는 수학에서 중요한 개념으로, 두 정수의 비로 표현할 수 있는 수를 의미합니다. 이 문서에서는 유리수의 정의, 성질, 연산 방법, 역사적 배경 및 무리수와의 차이점을 체계적으로 탐구합니다. 유리수는 일상생활과 과학 기술 분야에서 넓게 활용되며, 수학 교육에서 기본적인 개념으로 자리 잡고 있습니다. --- ## 1. 정의 및 ...
# 정수 ## 개요 정수는 수학에서 가장 기본적인 숫자 집합 중 하나로, **0과 양의 정수, 음의 정수**를 포함합니다. 정수는 자연수(1, 2, 3, ...)와 그 반대 방향의 음의 정수(-1, -2, -3, ...) 그리고 0을 모두 포함하는 집합입니다. 이 문서에서는 정수의 정의, 성질, 역사적 배경, 연산 규칙, 실생활 적용 등을 체계적으로 탐구...