# 종속 변수 ## 개요 **종속 변수**(dependent variable)는 수학, 통계학, 과학 실험 등 다양한 분야에서 자주 사용되는 핵심 개념 중 하나로, 다른 변수의 변화에 따라 그 값이 결정되거나 영향을 받는 변수를 의미한다. 쉽게 말해, '결과' 또는 '출력'에 해당하는 변수로, 독립 변수(independent variable)의 변화에 ...
검색 결과
검색어를 입력하세요.
# 고유값 ## 개요 **고유값**(eigenvalue)은 선형대수학에서 행렬과 선형변환의 핵심적인 성질을 설명하는 중요한 개념이다. 주어진 정방행렬 \( A \)에 대해, 특정한 벡터 \( \mathbf{v} \)가 행렬 \( A \)를 곱했을 때 그 방향이 변하지 않고 크기만 스칼라배로 변하는 경우, 이 스칼라 값을 **고유값**(eigenvalue...
# AMD Optimizing CPU Libraries AMD Optimizing CPU Libraries(이하 AOCL)는 AMD 프로세서의 성능을 극대화하기 위해 특화된 고성능 수학 라이브러리의 집합입니다. 이 라이브러리는 과학 계산, 머신러닝, 데이터 분석, 고성능 컴퓨팅(HPC) 등 다양한 분야에서 활용되는 핵심 수치 연산을 최적화하여, AMD 기...
# 의사역행렬 의사역행렬(Pseudoinverse), 또는 무어-펜로즈 역행렬(Moore-Penrose Inverse)은 선형대수학에서 정방행렬이 아니거나 비가역적인 행렬에 대해 일반화된 역행렬을 제공하는 중요한 개념이다. 실제 응용에서 많은 문제들이 정방행렬이 아닌 비정방행렬로 표현되며, 이 경우 일반적인 역행렬을 정의할 수 없기 때문에 의사역행렬은 회...
# 수학적 모델링 수학적 모델링(Mathematical Modeling)은 현실 세계의 현상이나 시스템을 수학적 언어로 표현하고 분석함으로써 그 구조와 동작 원리를 이해하고 예측하는 과정을 말한다. 이는 자연과학, 공학, 경제학, 사회과학 등 다양한 분야에서 핵심적인 역할을 하며, 복잡한 문제를 체계적으로 접근할 수 있도록 도와준다. 수학적 모델링은 단순...
# 컴팩트성 ## 개요 **컴팩트성**(compactness)은 일반 위상수학에서 가장 중요한 개념 중 하나로, 공간의 "크기"와 "구조"에 대한 정보를 제공하는 위상적 성질이다. 직관적으로, 컴팩트 공간은 "유한한 것처럼 행동하는" 무한 집합이라 할 수 있다. 이 개념은 해석학, 함수해석학, 대수기하학 등 수학 전반에서 널리 활용되며, 특히 연속함수의...
# 분수의 나눗셈 분수의 나눗셈은 기초수학에서 중요한 개념 중 하나로, 두 분수를 나누는 방법을 다룹니다. 정수의 나눗셈과 달리 분수의 나눗셈은 직관적이지 않을 수 있으나, 그 원리를 이해하면 계산이 매우 간단해집니다. 이 문서에서는 분수의 나눗셈의 정의, 계산 방법, 원리, 그리고 실생활 응용 예시까지 단계별로 설명합니다. ## 개요 분수의 나눗셈은...
블라디미 레벤슈타인 블라디미르 레벤슈인(Vladimir Levenshtein, 935년5월 20일 – 201년 9월2일)은 소련 및 러시아의 유명한 수학자이자 정보 이론 및 오류 정정 코드 분야의 선구자 중 명이다. 그 특히 **레벤슈타인 거리**(Levenshtein Distance) 널리 알려져, 이 개념은 문자열 간의 유사도를 측정하는 데 핵심적인 ...
# 특성방정식 ## 개요 **특성정식**(Characteristic Equation)은 선대수학에서 정방행렬(사각행렬)의 고값(Eigenvalue을 구하기 위해 사용 핵심적인 개념이다. 주어진 정방행렬 $ A $에 대해, 고유값은렬의 선형 변에서 방향이 변 않는 벡터(유벡터)에응하는 스칼 값으로 정의며, 이를 구하는 과정에서 특성방정식이 등한다. 특성정...
# 선형 연립방정 선형 연립방정식( System of Equations)은 여러 개의 선형 방정식이 동시에 성립해야 하는 조건을 나타내는학적 구조로, 선형대수학의 핵심 주제 중 하나입니다. 이는 과학, 공학, 경제학, 컴퓨터 과학 등 다양한 분에서 현실 세계의 문제를 모델링하고 해를 구하는 데 널리 사용됩니다. 본 문서에서는 선형 연립방정식의 정의 표현 ...
LyX ##요 **LyX**는 WIWYM**(What You See Is You Mean**, "는 것이 의미하는 바 나타낸다")을 지향 문서 작성 도구로, 사용자에게 LaTeX의 강한 조판 기능을픽 사용자 인터페이스(GUI)를 통해 보다 쉽게 접근할 수 있도록 설계된 오픈소스 소프트웨어이다. LyX는 전통적인 WYSIW**(What You See Wh...
# 범주 ## 개요 **범주**(Category) **범주론**(Category Theory) 기본 구성 요소로,학의 다양한 구조와 그들 사이 관계를 추상적으로 다루는 데 사용되는 수학적 개념이다. 범주론은1940대에 샘UEL 에일렌버그(Samuel Eilen)와 손더스 매클레인(Saunders Mac Lane)에 의해 위상수학 호몰로지 이을 정리하기 ...
# 열린 집합 열린 집합(Open Set) **일반 위상수학General Topology) 가장 기본적이고 핵심적인 개념 중 하나이다. 위 공간에서 열린합은 점들의 "처" 또는 "주"을 수학적으로 정의하는 데 사용되며, 연속성, 수렴, 연결성 등의 위상적 성질을 정의하는 데 필적인 역할을. 이 문서에서는 열린 집합의 정의, 성질, 예시, 그리고상 수학에서...
자연철학의학적 원리## 개요 《연철학의학적 원리》라틴어: *Philosophiæ Naturalis Principia Mathematic*, 영어: *Mathematical Principles of Natural Philosophy*)는국의 과학자 아이작 뉴턴(Isaac Newton)이 687년에 출판한 과학 서적이며, 현대 물리학과 천문학의 기초를 마련한...
# 덧셈 ## 개요 **덧셈**(加法 addition)은 수학 가장 기본적인 연산 중 하나로, 두 개 이상의 수를 결합하여 총합을 구하는 과정을 의미한다. 기호로는 **+**(플러스 기호)를 사용하며, 예를 들어 $ 3 + 5 = 8 $과 같이 표현한다. 덧셈은 자연수에서 시작하여 정수, 유리수, 실수, 복소수 등 다양한 수 체계로 확장되며, 일상생활뿐...
# 복소수 복소수(複素數, Complex)는 실수부와 허부로 구성된 수 체계로 수학, 물리학, 공학 등 다양한 분야에서 핵심적인 역할을 한다.소수는 차원 평면상 점으로 시각화할 수, 복소해석학(Complex Analysis의 기초를성한다. 이 문서 복소수의 정, 대수적 성질, 기하적 표현 연산법, 그리고 응용 분야에 대해 체계적으로 설명한다. --- ...
# 복소근 ## 개요 복근(複素, Complex Root)이란정식의 해 실수부와 허부를 모두 가질 수 있는 복소수 형태 근을 의미한다. 특히 실계수 다방정식에서 실수 범위 내 해를 찾을 수 없을 때, 복수 범위로 확장하면 해가 존재하는 경우가 많으며, 이러한 해를 복소근 한다. 복소근은 대학의 핵심 개념 중 하나로,16세기 이후 복소수의 체계적인 도입과...
분배법칙## 개요 분배법칙分配法則, Distributive Law은 수학, 기초대수학에서 매우 중요한 성 중 하나로, 덧셈과 곱셈의 관계를 설명하는 법칙입니다. 법칙은 수을 전개하거나 인분해할 때 핵심적인 역할을 하며, 초등학교 수학 처음 소개된 후 중등 및 고등 수까지 폭넓게 적용됩니다분배법칙 괄호 안의 항에 괄호 밖의 수를 곱할 때, 각 항에 개별적으...
가우스 소법 ## 개요 **가스 소거법**(Gaussianination)은 선형 연립방정을 풀기 위한 가장 대표적인 알고리즘 중 하나로, 행렬을 **기약 사다리꼴**(reduced row echelon form) 또는사다리꼴row echelon form)로 변환하여 해를 구하는 방법이다. 이 방법은 독일의 수학자 카를 프리드리히 가우스의 이름을 따 명명...
# 라그랑주 표기 라그랑주 표법(Lagrange's notation)은분을 나타내는 수학 기 체계 중 하나로, 프랑스의 수학자 조제프루이 라그랑주(Joseph-Louis Lagrange의 이름을 따서 명명되었다. 표기법은의 도함수(derivative)를 표현하는 데 널리 사용되며, 특히 미적분학 교육 및 공학, 물리학 등 다양한 분야에서 흔히 등장한다. ...