# 체인 규칙 ## 개요 **체인 규칙**(Chain Rule)은 미적분학에서합성함수**(composite function)의 도함수를 구하는 데 사용되는 핵심적인 미분 법칙이다. 두 개 이상의 함수가 합성된 형태, 즉 $ y = f(g(x)) $ 와 같은 함수의 변화율을 계산할 때 매우 유용하며, 고등 수학 및 응용 과학 전반에서 빈번히 사용된다. 체...
검색 결과
"Calculus"에 대한 검색 결과 (총 52개)
# 수직 점근선 ## 개요 수직 점근선(vertical asymptote)은 함수의프가 특정 수직에 무한히까워지면서 그을 지나지 않는 현상을 말. 수직 점선은 함수가 정의되지 않거나 무한대로 발산하는 점에서 발생하며, 주로 유리함수, 로그함수, 삼각함수 등의 함수에서 관찰된다. 수직 점근선은 함수의 극한 성질을 이해하고, 그래프의 형태를 분석하는 데 중...
# 미적분학 ## 개요 미적학(微積分學, Calculus)은 수학의 한 분야로, **변화율**(미분)과 **누적량**(적분)을 다루는 학문이다. 현대 과학과 공학, 경제학, 물리학 등 다양한 분야에서 핵심 도구로 사용되며, 함수의 기울기, 면적, 부피, 속도, 가속도 등을 분석하는 데 필수적인 역할을 한다. 미적분학은 17세기에 아이작 뉴턴(Isaac ...
# 중간 변수 ## 개요 미적분학에서 **중간 변수**(intermediate variable)는 복합 함수(composite function)의 구조를 이해하고 미분을 수행할 때 자주 등장하는 개념이다. 중간 변수는 독립 변수와 종속 변수 사이에 위치하여, 함수의 입력값이 최종 출력값에 영향을 미치는 과정에서 일종의 '매개체' 역할을 한다. 특히, *...
# 수평 점근선 수평 점근선(水平漸近線, Horizontal Asymptote)은 함수의 그래프가 독립변수(보통 $ x $)가 양의 무한대($ +\infty) 또는 음의 무한대($ -\infty $)로 갈 때, 특정한 수평선에 점점 가까워지는 경향을 보일 때 존재하는 직선이다. 이 개념은 미적분학, 특히 함수의 극한과 그래프 해석에서 중요한 역할을 하며,...
# 나눗셈 규칙 나눗셈 규칙(Division Rule)은 미적분학에서 두 함수의 **비**(ratio)로 표현된 함수를 미분할 때 사용하는 중요한 미분 법칙 중 하나입니다. 이 규칙은 곱셈 규칙(Product Rule)과 함께 초월함수, 유리함수 등의 도함수를 구하는 데 핵심적인 역할을 하며, 고등학교 수학에서 대학 수준의 해석학까지 널리 활용됩니다. ...
# 복합함수 복합함수(複合函數, Composite Function)는 두 개 이상의 함수를 결합하여 만든 새로운 함수를 의미합니다. 수학, 특히 함수론에서 매우 개념으로, 함수의 출력값을 다른의 입력값으로 사용함으로써 함수 간의 관계를 표현하고 분석하는 데 핵심적인 역할을 합니다. 복합함수는 미적분학, 해석학, 선형대수학, 컴퓨터 과학 등 다양한 분야에서...
# 로그함수 로그함수(logarithmic function) 지수함수의 역함로 정의되는 수학적 함수로, 수학 전반과 과학, 공학, 경제학 등 다양한 분야에서 중요한 역할을 한다. 로그함수는 큰 수를 다루거나 지수적인 증가·감소를 분석할 때 유용하며, 특히 데이터의 스케일을 조정하거나 복잡한 곱셈을 덧셈으로 변환하는 데 자주 사용된다. 이 문서에서는 로그함...
# 미분방정식 미분방정식(Differential Equation은 하나 이상의 변수에 대한 함수와 그 함수의 도함수(미분)가 포함된 방정식을 의미합니다. 이 자연과학, 공학, 경제학, 생물학 등 분야에서 시스템의 동적 변화를 모델링하는 데 핵심적인 도구로 사용됩니다. 미분방정식을 통해 물체의 운동, 열의 전도, 전기 회로의 거동, 인구 성장, 감염병 확산...
# 불연속점 ## 개요 함수의 **불연속점**(discontinuity point)은 함수가 특정 점에서 연속이 아닌 경우를 의미합니다. 미분학에서 함수의속성은 극한, 미분, 적분 등 다양한 개념의 기초가 되며, 불속점은 이러한 성질이 깨지는 지점을 분석하는 데 중요한 역할을 합니다. 불연속점은 함수의 그래프에서 '끊어짐', '점프', '무한대 발산' ...
# 해석적 표현함수는 수학에서 두 집합 사이의 관계 정의하는 핵 개념으로, 다양한 방식으로 표현할 수 있다 그중 **해석적 표현**(Analytic Representation)은 함수를 수식 또는 수학적 공식을 통해 명확히 기술하는 방법을 의미한다. 이 표현식은 함수의의역과 공역 사이의 정량적 관계를 정밀하게 설명할 수 있어 수학, 물리학, 공학 등 정량적...
출력값 **값**(output value)은 수학에서 함수의 **종속변수**(dependent variable)에 해당하는 개념으로, 함수에 입력된 값(입력값 또는 독립변수)에 결정되는 결과값을 의미한다. 함수는 일종의 '규칙' 또는 '사상'으로, 하나 이상의 입력값을 받아 정해진 방식에 따라 하나의 출력값을 산출한다. 출력값은 함수의 핵심 구성 요소 중...
# 함수 ## 개요 **함수**(function)는 수학에서 매우 핵심적인 개념 중 하나로, 두 집합 사이의 특정한 관계를 설명하는 도구이다. 간단히 말해, 함수는 **입력값**(독립변수) 하나에 대해 **정확히 하나의 출력값**(종속변수)을 대응시키는 규칙이다. 함수는 수학 전반은 물론 물리학, 공학, 컴퓨터 과학, 경제학 등 다양한 분야에서 모델링과...
# 분수분해 ## 개요 분수분해(Partial Fraction Decomposition)는 복잡한 유리 함수를 더 단순한 유리 함수의 합으로 분해하는 대수적 기법입니다. 주로 적분 계산, 미분 방정식 풀이, 역라플라스 변환 등에서 활용되며, 유리 함수의 분모를 일차 또는 이차 인수로 분해한 뒤 분자를 적절히 조합하여 표현합니다. ## 분수분해의 정의와 ...
Okay, I to create a professional Korean document about "정적분" (Definite Integral) under the category of Calculus in Mathematics. Let me start by understanding the structure and requirements given. Fir...
# 함수 ## 개요 함수(function)는 수학, 특히 미적분학에서 핵심적인 개념으로, 두 집합 사이의 입력값과 출력값의 관계를 정의하는 규칙입니다. 미적분학에서는 함수의 변화율(미분)과 누적합(적분)을 분석함으로써 과학, 공학, 경제학 등 다양한 분야의 문제를 해결할 수 있습니다. 이 문서에서는 함수의 기본 정의, 특성, 종류, 미적분학에서의 활용을 ...
# 체인 규칙 ## 개요 체인 규칙(Chain Rule)은 미적분학에서 합성 함수의 도함수를 구하는 핵심적인 방법론입니다. 이 규칙은 외부 함수와 내부 함수의 변화율을 곱하여 전체 함수의 변화율을 계산하는 방식으로, 과학 및 공학 분야에서 복잡한 함수의 미분을 단순화하는 데 널리 사용됩니다. 예를 들어, $ f(g(x)) $ 형태의 함수에서 $ x $에 ...
# 치역 ## 개요 **치역**(range)은 수학, 특히 함수와 기하학에서 중요한 개념으로, 함수가 **정의역**(domain)의 입력값에 대해 실제로 출력하는 값들의 집합을 의미합니다. 치역은 **공역**(codomain)과 구분되어야 하며, 공역은 함수가 가질 수 있는 모든 가능한 출력값의 집합이지만 치역은 실제로 함수에 의해 "달성되는" 값들만 포...
# 점근선 ## 개요 점근선(Asymptote)은 수학, 특히 미적분학에서 함수의 그래프가 무한대로 발산할 때 가까워지는 직선을 의미합니다. 이는 함수의 전반적인 행동을 이해하고 그래프를 정확하게 그리는 데 중요한 역할을 합니다. 점근선은 크게 **수직 점근선**, **수평 점근선**, **기울기 점근선**으로 구분되며, 각각의 조건과 활용 방법은 서로 ...
# 부분적분 ## 개요 부분적분(部分積分, Integration by Parts)은 미적분학에서 곱의 미분법을 기반으로 한 적분 기술로, 복잡한 함수의 곱을 포함하는 적분을 단순화하여 계산하는 데 사용됩니다. 이 방법은 특히 다항식과 삼각함수, 지수함수, 로그함수의 곱 형태로 주어진 적분 문제에 효과적입니다. 본 문서에서는 부분적분의 공식 유도, 적용 방...