과학 계산 ## 개요 **과학 계산**(Scientific Computing)은 수학, 물리, 공학,물학 등 다양한 과 분야의 문제를 해결하기 위해 컴퓨터를 활용하는 학문 분야. 이는 복한 수학적 모을 수치적으로 해석하고, 실제 현상을 시뮬레이션하거나 예측하는 데 중심적인 역할을 한다. 과학 계산은 이론적 분석과 실험적 관찰에 더해 **제3의 과학 방법...
검색 결과
"공학"에 대한 검색 결과 (총 277개)
# 데이터 변환 데이터 변환(Data Transformation)은 데이터 과학 및 정보 처리 과정에서 핵심적인 단계 중 하나로, 원시 데이터를 분석이나 모델링에 적합한 형태로 재구조화하거나 변형하는 작업을 의미합니다. 이 과정은 데이터 정제, 통합, 정규화, 스케일링 등 다양한 기법을 포함하며, 데이터 품질을 높이고 분석 결과의 신뢰성을 보장하는 데 중...
텍스트형 특 ## 개요 **텍스트형 특성**(Text Feature)은 데이터 과학 및 머신러닝 분야에서 문자열 형태로 표현된 정보를 의미하며, 숫자형 데이터와 달리 자연어로 구성된 데이터를 포함합니다. 이는 이름, 설명, 리뷰, 문서, 소셜 미디어 게시물 등 다양한 형태로 나타날 수 있으며, 분석 전에 적절한 전처리와 수치화 과정이 필요합니다. 텍스트...
# RFC 7042 ## 개요 **RFC 042**는 인터 공학 태스크 포스(Internet Task Force, I)에서 발행한 기술 문서로, *"IETF의 전송 계층 보안(TLS) 프로토콜과 관련된 보안 취약점 및 방어 기법에 대한 정보 제공"*을 목적으로 하기보다는, 실제로 **IETF에서 사용하는 문서 작성 및 제출 표준 형식**에 초점을 맞추고...
# 학습 데이터 ## 개요 **학습 데이터**(Training Data)는 기계학습(Machine Learning) 모델이 특정 과제를 수행할 수 있도록 훈련시키기 위해 사용되는 데이터 세트를 의미합니다. 이 데이터는 모델이 입력과 출력 간의 관계를 학습하고, 새로운 데이터에 대해 예측 또는 분류를 수행할 수 있는 능력을 습득하는 데 핵심적인 역할을 합...
# 최소 제곱법 ## 개요 최소 제곱법**(Least Squares Method)은 통계학과 데이터 분석에서 널리 사용되는 수학적 기법으로,측된 데이터와델의 예측값 사이의 오차를 최소화 방식으로 모델의 매개변수를 추정하는 방법이다. 특히 **회귀분석**(Regression Analysis)에서 독립변수와 종속변수 간의 관계를 설명하기 위한 직선(또는 곡...
# 선형 최소 제곱법 ## 개요 선형 최 제곱법(Linear Least Squares Method)은 통계학 수치해석에서 널리 사용되는귀분석 기법으로, 관측된 데이터와 모델의 예측값 사이의 **잔차 제곱합**(Sum of Squared Residuals)을 최소화하여 모의 파라미터를 추정하는 방법입니다. 이 방법은 선 회귀 모델의 추정에 가장 기본적이면...
Okay, I to create a professional Korean document about "정적분" (Definite Integral) under the category of Calculus in Mathematics. Let me start by understanding the structure and requirements given. Fir...
# 함수 ## 개요 함수(function)는 수학, 특히 미적분학에서 핵심적인 개념으로, 두 집합 사이의 입력값과 출력값의 관계를 정의하는 규칙입니다. 미적분학에서는 함수의 변화율(미분)과 누적합(적분)을 분석함으로써 과학, 공학, 경제학 등 다양한 분야의 문제를 해결할 수 있습니다. 이 문서에서는 함수의 기본 정의, 특성, 종류, 미적분학에서의 활용을 ...
# 연속성 ## 개요 **연속성**(Continuity)은 미적분학에서 함수의 중요한 성질 중 하나로, 함수 그래프가 끊김 없이 매끄럽게 연결되어 있음을 의미합니다. 이 개념은 극한과 밀접하게 연관되어 있으며, 함수의 행동을 예측 가능하게 만드는 기초가 됩니다. 연속성은 수학적 분석뿐만 아니라 물리학, 공학, 경제학 등 다양한 분야에서 모델링에 필수적인 ...
# 골프공 ## 개요 골프공은 골프 게임의 핵심 장비 중 하나로, 정밀한 제작 기술과 과학적 원리가 적용된 스포츠 용품입니다. 현대 골프공은 단순한 구형 물체가 아닌, 공기역학, 재료공학, 제조 기술이 결합된 고성능 제품으로 발전했습니다. 이 문서에서는 골프공의 역사, 구조, 종류, 선택 방법, 관리 요령, 최신 트렌드를 다룹니다. --- ## 역사적...
# 체인 규칙 ## 개요 체인 규칙(Chain Rule)은 미적분학에서 합성 함수의 도함수를 구하는 핵심적인 방법론입니다. 이 규칙은 외부 함수와 내부 함수의 변화율을 곱하여 전체 함수의 변화율을 계산하는 방식으로, 과학 및 공학 분야에서 복잡한 함수의 미분을 단순화하는 데 널리 사용됩니다. 예를 들어, $ f(g(x)) $ 형태의 함수에서 $ x $에 ...
# 수직점근선 ## 개요 수직점근선(Vertical Asymptote)은 함수의 그래프가 특정 수직선 $ x = a $ 근처에서 무한대로 발산하는 현상입니다. 이는 함수가 정의되지 않은 점에서 발생하며, 미적분학에서 함수의 극한과 연속성, 불연속점 분석에 중요한 개념입니다. 수직점근선은 유리함수, 삼각함수 등 다양한 수학적 모델에서 관찰되며, 물리학과 공...
Okay, I to write a professional wiki-style document in Korean about the Ordinary Least Squares (OLS) method under the category of Regression in Statistics. Let me start by outlining the structure base...
# CGI (Common Gateway Interface) ## 개요 CGI(공통 게이트웨이 인터페이스)는 웹 서버와 외부 애플리케이션 간의 통신을 표준화한 인터페이스입니다. 1993년 미국 국립 과학 재단(NCSA)에서 개발된 이 기술은 동적 콘텐츠 생성, 사용자 입력 처리 등 서버측 작업을 가능하게 하며, 웹 기술 발전의 초기 단계에서 핵심 역할을 했...
# 유체역학 ## 개요 유체역학(Fluid Mechanics)은 액체와 기체를 포함한 유체의 정적 및 동적 거동을 연구하는 물리학의 하위 분야이다. 이 분야는 유체가 외부 힘에 어떻게 반응하는지, 유동 패턴과 압력 분포를 이해하며, 공학, 자연과학, 의학 등 다양한 분야에서 핵심적인 역할을 한다. 유체역학은 고전 물리학의 기초 이론과 현대 기술 개...
# 스트라이드 (Stride) ## 개요 스트라이드는 데이터 과학 및 분석 분야에서 다양한 의미로 사용되는 기술적 개념입니다. 주로 배열 또는 시계열 데이터 처리에서 단계별 이동량을 나타내며, 알고리즘 효율성 향상이나 데이터 특징 추출에 활용됩니다. 본 문서에서는 스트라이드의 정의, 응용 분야, 기술적 구현 방식 등을 체계적으로 설명합니다. --- #...
# STEM 교육 ## 개요 STEM(Science, Technology, Engineering, Mathematics) 교육은 과학(S), 기술(T), 공학(E), 수학(M)의 네 가지 학문 분야를 통합적으로 탐구하는 교육 방법이다. 이는 단일 과목에 대한 지식을 넘어, 실생활 문제 해결을 위한 종합적 사고력과 창의성을 기르는 데 중점을 두며, ...
# 복합함수 ## 개요 복합함수(composite function)는 수학에서 두 함수를 결합하여 새로운 함수를 생성하는 방법이다. 이 개념은 미적분학, 해석학, 공학 등 다양한 분야에서 핵심적인 역할을 하며, 특히 복잡한 수식의 도함수 계산에 필수적이다. 복합함수는 하나의 함수의 결과를 다른 함수에 입력으로 사용하는 방식으로 정의되며, 이는 함수의...
# 연쇄법칙 (Chain Rule) ## 개요/소개 연쇄법칙(Chain Rule)은 미적분학에서 복합함수(composite function)의 도함수를 계산하는 기본적인 규칙이다. 두 함수 $ f(x) $와 $ g(x) $가 주어졌을 때, $ h(x) = f(g(x)) $로 정의된 복합함수의 도함수는 $ h'(x) = f'(g(x)) \cdot g'(x)...