# 등분산성 등분산성(等分散性, Homoscedasticity)은 통계학, 특히 회귀분석에서 매우 중요한 가정 중 하나로, 회귀 모형의 잔차(residuals)가 모든 독립변수 값에 대해 동일한 분산을 가진다는 성질을 의미합니다. 이 가정이 만족되지 않을 경우, 회귀 계수의 추정치는 여전히 불편(unbiased)할 수 있지만, 표준오차의 추정이 부정확해져...
검색 결과
검색어를 입력하세요.
# 외생 변수 ## 개요 외생 변수(外生變數, exogenous variable)는 통계학, 특히 회귀분석과 계경제학에서 중요한 개념 중 하나로, 모델 외부에서 결정되며 분석 대상인 모델 내부의 변수에 영향을 미치지만, 모델 내부의 다른 변수로부터 영향을 받지 않는 변수를 의미한다. 외생 변수는 주로 독립변수(independent variable)로 사...
# 설명변수의 분산## 개요 회귀분석(Regression Analysis)은 종속변수(dependent variable)와 이상의 독립변수(independent variable) 간의 관계를 모델링하고 분석하는 통계적 기법이다. 이 과정에서 독립변수는 일반적으로 **설명변수**(explanatory variable) 또는 **예측변수**(predictor...
# 분산 ## 개요 **분산**(Variance)은 통계학에서 데이터의 산포도, 즉 데이터 값들이 평균을 중심으로 얼마나 퍼져 있는지를 나타내는 대표적인 척도이다. 분산은 회귀분석, 추정, 가설 검정 등 다양한 통계적 분석에서 핵심적인 역할을 하며, 데이터의 변동성과 불확실성을 정량적으로 평가하는 데 사용된다. 특히 회귀분석에서는 잔차의 분산, 설명변수...
Adjusted R-s ## 개요**Adjusted R-squared수정된 결정계수)는귀분석에서 모의 적합도를 평가하는 지표 중 하나로, 일반적인 **R-squared**(결계수)의계를 보완하기 위해 제안된 통계량이다. R-squared 독립변수들이 종속변수를 잘 설명하는지를 나타내는 값이지만, 독립변수를 추가할수록 무조건 증가하는 성향이 있어 모델의 과...
# 수학적 표현 수학적 표현(Mathematical Expression)은 수학적 개념, 관계, 연산 등을 기호와 언어를 통해 명확하고 간결하게 전달하는 수단이다. 수학은 추상적인 사고를 기반으로 하기 때문에, 이를 효과적으로 기술하고 전달하기 위해서는 체계화된 표현 방식이 필수적이다. 수학적 표현은 단순한 기호 나열을 넘어서 논리적 구조와 의미를 내포하...
# 최소 제곱법 ## 개요 최소 제곱법**(Least Squares Method)은 통계학과 데이터 분석에서 널리 사용되는 수학적 기법으로,측된 데이터와델의 예측값 사이의 오차를 최소화 방식으로 모델의 매개변수를 추정하는 방법이다. 특히 **회귀분석**(Regression Analysis)에서 독립변수와 종속변수 간의 관계를 설명하기 위한 직선(또는 곡...
# 선형 최소 제곱법 ## 개요 선형 최 제곱법(Linear Least Squares Method)은 통계학 수치해석에서 널리 사용되는귀분석 기법으로, 관측된 데이터와 모델의 예측값 사이의 **잔차 제곱합**(Sum of Squared Residuals)을 최소화하여 모의 파라미터를 추정하는 방법입니다. 이 방법은 선 회귀 모델의 추정에 가장 기본적이면...
# 수치적 데이터 포인트 ## 개요/소개 수치적 데이터 포인트(Numerical Data Points)는 **양적 정보**를 나타내는 데이터의 기본 단위로, 수학적 또는 통계적 분석에 활용됩니다. 이들은 숫자 형태로 표현되어 데이터의 정량적 특성을 반영하며, 데이터 과학에서 중요한 역할을 합니다. 예를 들어, 온도 측정값(25°C), 매출액(100만 ...