# 연속 함수 ## 개요 **연속 함수**(continuous function)는 위상수학에서 가장 기본적이면서도 핵심적인 개념 중 하나이다. 직관적으로, 연속 함수란 입력값이 조금만 변할 때 출력값도 조금만 변하는 함수를 의미한다.는 기하학적으로 "끊김 없이 이어지는 그래프"를 그리는 함수와 유사하다. 그러나 위상수학에서는 거리 개념이 필요 없이, *...
검색 결과
"연속 함수"에 대한 검색 결과 (총 16개)
# 수치적 미분 ## 개요 수치적 미분(Numerical Differentiation)은 함수의 해석적 도함수를 구하기 어려운 경우, 또는 함수의 형태가 명시적으로 주어지지 않고 단지 이산적인 데이터 점는 수치해석의 핵심 분야 중 하나로,학, 공학, 컴퓨터 시뮬레이션, 다양한 분야에서 널리 활용됩니다. 수치적 미분은 미분의 정의를 기반으로 하며, 주로...
# 범주 ## 개요 **범주**(Category) **범주론**(Category Theory) 기본 구성 요소로,학의 다양한 구조와 그들 사이 관계를 추상적으로 다루는 데 사용되는 수학적 개념이다. 범주론은1940대에 샘UEL 에일렌버그(Samuel Eilen)와 손더스 매클레인(Saunders Mac Lane)에 의해 위상수학 호몰로지 이을 정리하기 ...
# 수치 연산 개요 **수치 연산**(ical Computation) 수학적 문제를 근사적으로 해결하기 위해 실수나 부동소수점 수를 사용하여 계산을 수행하는 과정을 의미합니다. 이는 해석학적 방법으로 정확한 해를 구하기 어려운 복잡한 수학 문제, 특히 미분 방정식, 선형 대수, 적분, 최적화 등에 대해 컴퓨터를 이용해 근사해를 구하는 데 핵심적인 역할...
# 열린 집합 열린 집합(Open Set) **일반 위상수학General Topology) 가장 기본적이고 핵심적인 개념 중 하나이다. 위 공간에서 열린합은 점들의 "처" 또는 "주"을 수학적으로 정의하는 데 사용되며, 연속성, 수렴, 연결성 등의 위상적 성질을 정의하는 데 필적인 역할을. 이 문서에서는 열린 집합의 정의, 성질, 예시, 그리고상 수학에서...
# 매끄러움 ## 개요수학, 특히 미분정식 이론에서 **매끄러움**(smooth)은 함수의 미분 가능성 정도를 나타내는 중요한 개념이다. 매끄러운 함수는 특정한 미분 가능성 조건을 만족하는 함수로, 미분방정식의 해가 존재하고 유일한지를 판단하거나, 해의 정규성(regularity)을 분석하는 데 핵심적인 역할을 한다. 매끄러움은 해석학적 성질 중 하나로,...
범주론 ## 개요 범주론(Category Theory)은 수학의 분야로, 다양한 수학적 구조와 그 사이의 관계를 추상적으로 다루는 이이다. 1940년대에 샘UEL 에일렌버그(Samuel Eilenberg와 새먼 매클레인(Saunders Mac Lane)에 의해 위상수학과 호몰로지 대수학의 개념을 일반하기 위해 도입되었으며 오늘날에는 수학 전반은 물론 컴...
# L∞ 노름 ## 개요 L∞ 노름-infinity norm), **최대 노름**(maximum norm), **균등 노름**(uniform norm), **서프리멈 노름**(supremum norm)은 벡터 공간 또는 함수 공간에서 벡터나 함수의 크기를 측정하는 방법 중 하나로, 선형대수학과 함수해석학에서 중요한 역할을 한다. L∞ 노름은 벡터의 성분...
토폴로지 ## 개요 **토폴로지**(topology)는 수학의 한 분야로, 기하학적 도형이나 공간의 **연속적인 변형** 아래에서 보존되는 성질을 연구하는 학문입니다. 즉, 늘이거나 구부리거나 비틀어도 형태가 바뀌지 않는 **위상적 성질**(topological properties)을 다룹니다. 예를 들어, 컵과 도넛은 서로 다른 모양이지만, 토폴로지에...
# 초기값 문제 ## 개요 **초기값 문제**(Initial Value, IVP)는 미분방정식 이론에서 중요한 주제 중 하나로, 주어진 미분방정식과 특정한 초기 조건을 만족하는 해를 찾는 문제를 말한다. 일반적으로 시간에 따라 변화하는 동역학적 시스템의 행동을 모델링할 때 사용되며, 물리학, 공학, 생물학, 경제학 등 다양한 분야에서 널리 활용된다. ...
# 위상수학 ## 개요 **위상수학**(topology)은 기하학의 한 분야로,형이나 공간의 **연속적인 변형** 아래에서 불변인 성질을 연구하는 수학의 분야이다. 위상수학에서는 길이, 각도, 면적과 같은 정량적인 기하학적 속성보다는, 공간의 **연결성**, **경계**, **연속성**, **열림과 닫힘**과 같은 질적인 성질에 주목한다. 예를 들어, ...
# 불연속점 ## 개요 함수의 **불연속점**(discontinuity point)은 함수가 특정 점에서 연속이 아닌 경우를 의미합니다. 미분학에서 함수의속성은 극한, 미분, 적분 등 다양한 개념의 기초가 되며, 불속점은 이러한 성질이 깨지는 지점을 분석하는 데 중요한 역할을 합니다. 불연속점은 함수의 그래프에서 '끊어짐', '점프', '무한대 발산' ...
# 함수 ## 개요 **함수**(function)는 수학에서 매우 핵심적인 개념 중 하나로, 두 집합 사이의 특정한 관계를 설명하는 도구이다. 간단히 말해, 함수는 **입력값**(독립변수) 하나에 대해 **정확히 하나의 출력값**(종속변수)을 대응시키는 규칙이다. 함수는 수학 전반은 물론 물리학, 공학, 컴퓨터 과학, 경제학 등 다양한 분야에서 모델링과...
# MLP ## 개요 **MLP**(Multi-Layer Perptron, 다층 퍼셉트론)은 인공신경망(Artificial Neural Network, ANN)의 가장 기본적이고 널리 사용되는 형태 중 하나입니다 단일 퍼셉트론은 선형적으로 분리 가능한 문제만 해결할 수 있지만, MLP는 여러 개의 은닉층(Hidden Layers)을 포함함으로써 **비선...
# 함수 ## 개요 함수(function)는 수학, 특히 미적분학에서 핵심적인 개념으로, 두 집합 사이의 입력값과 출력값의 관계를 정의하는 규칙입니다. 미적분학에서는 함수의 변화율(미분)과 누적합(적분)을 분석함으로써 과학, 공학, 경제학 등 다양한 분야의 문제를 해결할 수 있습니다. 이 문서에서는 함수의 기본 정의, 특성, 종류, 미적분학에서의 활용을 ...
# 연속성 ## 개요 **연속성**(Continuity)은 미적분학에서 함수의 중요한 성질 중 하나로, 함수 그래프가 끊김 없이 매끄럽게 연결되어 있음을 의미합니다. 이 개념은 극한과 밀접하게 연관되어 있으며, 함수의 행동을 예측 가능하게 만드는 기초가 됩니다. 연속성은 수학적 분석뿐만 아니라 물리학, 공학, 경제학 등 다양한 분야에서 모델링에 필수적인 ...