# 정수 ## 개요 정수는 수학에서 가장 기본적인 숫자 집합 중 하나로, **0과 양의 정수, 음의 정수**를 포함합니다. 정수는 자연수(1, 2, 3, ...)와 그 반대 방향의 음의 정수(-1, -2, -3, ...) 그리고 0을 모두 포함하는 집합입니다. 이 문서에서는 정수의 정의, 성질, 역사적 배경, 연산 규칙, 실생활 적용 등을 체계적으로 탐구...
검색 결과
"값"에 대한 검색 결과 (총 864개)
# 연산 ## 개요 연산은 수학에서 숫자나 대상 간의 관계를 정의하고 계산하는 기본적인 행위로, 기초수학 교육에서 핵심 개념이다. 덧셈, 뺄셈, 곱셈, 나눗셈과 같은 산술 연산부터 거듭제곱, 제곱근, 순서의 법칙에 이르기까지 다양한 형태가 존재하며, 이는 문제 해결 능력과 논리적 사고를 기르는 데 필수적이다. 본 문서에서는 연산의 정의, 종류, 성...
# 미적분학 ## 개요 미적분학은 수학의 중요한 분야로, 변화율과 누적량을 연구하는 학문이다. 고등학교 수학에서 필수적인 내용으로, 함수의 극한, 도함수, 적분 등을 다루며 과학, 공학, 경제학 등 다양한 분야에 응용된다. 이 문서는 미적분학의 기초 개념부터 실제 적용까지 체계적으로 설명한다. --- ## 1. 미적분학의 역사와 개발 ### 1.1 고...
# 방정식 ## 개요/소개 방정식은 수학에서 두 표현이 같음을 나타내는 수학적 문장으로, 미지수(변수)와 계수를 포함합니다. 이는 문제 해결을 위한 핵심 도구로, 과학, 공학, 경제 등 다양한 분야에서 활용됩니다. 방정식은 변수의 값을 찾기 위해 해법을 적용하며, 기본 수학 교육에서 필수적인 개념입니다. ## 정의 및 기본 개념 ### 1. 방정식의 구...
# 연산 ## 개요 연산(Operations)은 수학과 통계에서 데이터를 처리하고 분석하기 위해 사용되는 기본적인 계산 및 논리적 절차를 의미합니다. 이는 단순한 산술 계산부터 복잡한 통계 모델링까지 다양한 영역에 적용되며, 데이터의 특성 파악과 결과 도출에 필수적인 역할을 합니다. 본 문서에서는 연산의 주요 유형, 통계 분야에서의 활용 방식, 그...
# 미적분학 ## 개요 미적분학(calculus)은 수학의 중요한 분야로, 변화와 누적을 연구하는 학문이다. 17세기에 뉴턴(Isaac Newton)과 라이프니츠(Gottfried Wilhelm Leibniz)에 의해 체계화된 이 분야는 물리학, 공학, 경제학 등 다양한 과학 분야에서 필수적인 도구로 사용된다. 미적분학은 **미분**과 **적분** 두 가...
# 비만 ## 개요 비만은 체중이 정상 범위를 크게 초과하여 건강에 악영향을 미치는 상태로, 전 세계적으로 심각한 공중보건 문제로 여겨진다. 주로 과도한 지방 축적과 관련되며, 이는 대사 이상, 만성 질환, 조기 사망 위험 증가 등 다양한 건강 문제를 유발한다. 비만은 단순히 외형적인 문제가 아니라 생리학적, 심리적 요인의 복합체로, 예방과 치료에...
# 전기 모터 ## 개요 전기 모터는 전기를 기계적 에너지로 변환하는 장치로, 특히 전기차(EV)에서 핵심적인 역할을 합니다. 이 문서에서는 전기 모터의 기본 원리, 종류, 작동 방식, 전기차 적용 사례 및 기술적 특징에 대해 설명합니다. --- ## 1. 전기 모터의 기본 원리 전기 모터는 **전자기 유도**와 **자기장 상호작용**을...
# 활성화 함수 ## 개요/소개 활성화 함수는 인공신경망(ANN)에서 입력 신호를 처리하여 출력을 생성하는 데 사용되는 핵심 요소입니다. 이 함수는 신경망이 비선형 관계를 학습할 수 있도록 하며, 단순한 선형 모델로는 해결 불가능한 복잡한 문제(예: 이미지 인식, 자연어 처리)를 해결하는 데 기여합니다. 활성화 함수의 선택은 네트워크 성능, 수렴 속도...
# 시그모이드 함수 ## 개요 시그모이드 함수(Sigmoid Function)는 **0에서 1 사이의 값을 출력**하는 비선형 활성화 함수로, 인공지능(AI) 및 머신러닝(ML) 분야에서 널리 사용됩니다. 이 함수는 로지스틱 회귀(Logistic Regression), 신경망(Neural Network) 등에서 **확률을 예측**하거나 **이진 분류(Bi...
# 로짓(Logit) ## 개요 로짓(logit)은 통계학과 데이터 과학에서 중요한 개념으로, 확률(probability)을 **로그-오즈(log-odds)** 형태로 변환하는 함수입니다. 이는 주로 **로지스틱 회귀**(logistic regression)와 같은 분류 모델에서 사용되며, 이진 결과(예: 성공/실패, 승리/패배)를 예측할 때 유용합니다....
# L1 정규화 ## 개요/소개 L1 정규화(L1 Regularization)는 머신러닝 모델의 과적합(overfitting)을 방지하기 위해 사용되는 중요한 기법 중 하나입니다. 이 방법은 모델의 파라미터(계수)에 절대값을 기반으로 페널티를 추가하여, 불필요한 특성(feature)을 제거하고 모델의 단순성을 유지합니다. L1 정규화는 특히 **스파시...
# 드롭아웃 (Dropout) ## 개요 드롭아웃(Dropout)은 인공지능(AI) 분야에서 네트워크 과적합(overfitting)을 방지하기 위한 **정규화 기법**으로, 신경망의 훈련 중 일부 뉴런을 무작위로 비활성화하는 방법이다. 이 기법은 2014년 제프리 힌턴(Jeffrey Hinton) 등이 발표한 논문에서 처음 소개되었으며, 현재 딥러닝 모델...
# 컨볼루션 신경망 ## 개요 컨볼루션 신경망(Convolutional Neural Network, CNN)은 이미지 처리 및 컴퓨터 비전 분야에서 널리 사용되는 인공신경망의 한 종류입니다. 주로 2차원 또는 3차원 데이터(예: 이미지, 영상)를 자동으로 특징을 추출하고 분류하는 데 효과적입니다. CNN은 계층 구조를 통해 입력 데이터에서 계층적인...
# 딥러닝 ## 개요 딥러닝(Deep Learning)은 인공지능(AI)의 하위 분야로, 인간의 뇌 구조를 모방한 신경망(Neural Network)을 기반으로 데이터에서 복잡한 패턴을 학습하는 기술입니다. 2010년대 이후 컴퓨팅 파워와 대량 데이터의 확보로 급속히 발전하며, 컴퓨터 비전, 자연어 처리(NLP), 음성 인식 등 다양한 분야에서 혁신적인 ...
# 출력 게이트 ## 개요 출력 게이트(Output Gate)는 인공지능 분야에서 특히 **장기 기억 유닛(LSTM)**과 같은 순환 신경망(RNN) 구조에서 중요한 역할을 하는 기술적 요소이다. 이 개념은 시계열 데이터 처리, 자연어 이해 등 복잡한 패턴 인식 작업에 필수적이며, 신경망의 내부 상태를 조절하는 데 핵심적인 기능을 수행한다. 본 문서에서는...
# 망각 게이트 (Forget Gate) ## 개요/소개 망각 게이트는 인공지능 분야에서 특히 **장기 기억 신경망(LSTM, Long Short-Term Memory)**의 핵심 구성 요소로, 시계열 데이터 처리에 있어 중요한 역할을 합니다. 이 기술은 전통적인 순환 신경망(RNN)의 한계인 "긴급 의존성 문제"를 해결하기 위해 설계되었습니다. 망각 게...
# 입력 게이트 ## 개요 입력 게이트는 인공지능 분야에서 특히 **장기 기억 유닛**(LSTM)과 같은 **순환 신경망**(RNN) 구조에서 핵심적인 역할을 하는 구성 요소이다. 이 게이트는 시퀀스 데이터 처리 중 새로운 정보가 어떻게 저장되는지를 제어하며, 장기 의존성을 관리하는 데 기여한다. 입력 게이트의 작동 원리는 신경망의 **세포 상태**(ce...
# RNN (재귀 신경망) ## 개요 RNN(Recurrent Neural Network)는 시계열 데이터나 순서에 의존적인 문제를 처리하기 위해 설계된 인공지능 기술입니다. 전통적인 신경망과 달리, RNN은 이전 단계의 출력을 기억하여 현재 입력과 결합해 결과를 생성합니다. 이 특성 덕분에 자연어 처리(NLP), 시계열 예측, 음성 인식 등 다양한 분야...
# LSTM ## 개요 LSTM(Long Short-Term Memory)는 시계열 데이터와 같은 순차적 정보를 처리하는 데 특화된 인공지능 기술로, **기존의 순환 신경망(RNN)**에서 발생하던 **장기 의존성 문제**(Vanishing Gradient Problem)를 해결하기 위해 설계되었습니다. LSTM은 기억을 유지하고 필요 시 정보를 ...