# 파인튜닝 ## 개요 **파인튜닝**(Fine-tuning)은 사전 훈련된(pre-trained) 머신러닝 모델을 특정 과제나 도메인에 맞게 추가로 훈련하여 성능을 개선하는 과정을 의미합니다. 자연어처리(NLP, Natural Language Processing) 분야에서 파인튜닝은 전이학습(Transfer Learning)의 핵심 기법으로 자리 잡았...
검색 결과
"오차"에 대한 검색 결과 (총 141개)
# MSE ## 개요 **MSE**(Mean Squared Error, 평균 제곱 오차)는 회귀 분석에서 예측 모델의 정확도를 평가하는 데 널리 사용되는 지표입니다. 이 값은 예측값과 실제 관측값 사이의 차이(오차)를 제곱한 후, 그 평균을 계산함으로써 모델의 전반적인 오차 크기를 수치화합니다. MSE는 회귀 모델의 성능을 비교하거나 하이퍼파라미터 최적...
# 외생 변수 ## 개요 외생 변수(外生變數, exogenous variable)는 통계학, 특히 회귀분석과 계경제학에서 중요한 개념 중 하나로, 모델 외부에서 결정되며 분석 대상인 모델 내부의 변수에 영향을 미치지만, 모델 내부의 다른 변수로부터 영향을 받지 않는 변수를 의미한다. 외생 변수는 주로 독립변수(independent variable)로 사...
# 회귀 회귀(Regression)는 머신러닝 통계학에서 기법 중 하나로 하나 이상의 독립 변수(입력 변수)와 종속 변수(출력 변수) 사이의 관계를 모델링하여 연속 값을 예측하는 데 사용됩니다. 회귀 분석은 데이터의 패턴을 이해하고, 미래의 값을 추정하거나 간의 인과 관계를 탐색하는 데 널리 활용됩니다. 이 문서에서는 회귀 분석의 기본 개념, 주요 유형,...
# 예측 정확도 평가 예측 정확도가는 데이터과학에서 머신러닝 모델이나 통계 모델의 성능을 판단하는 핵심 과정이다. 모델이 학습된 후, 새로운 데이터에 대해 얼마나 정확하게 예측하는지를 평가함으로써 모델의 신뢰성과 실용성을 판단할 수 있다. 특히 분류, 회귀, 시계열 예측 등 다양한 예측 과제마다 적절한 평가 지표가 다르므로, 과제의 특성에 맞는 정확도 평...
# 중력 상수 중력 상수(G)는 물리학에서 뉴턴의 만유인력 법에 등장하는 기본 상수로, 두 물체 사이의 중력적 상호작용의 세기를 결정하는 데 핵심적인 역할을 한다. 이 상수는 우주의 기본 상수 중 하나로 간주되며, 고전 역학에서부터 천체 물리학, 우주론에 이르기까지 다양한 분야에서 활용된다. 본 문서에서는 중력 상수의 정의, 역사, 측정 방법, 물리적 의...
# 클러스터링 ## 개요 클러스터(Clustering)은 머신러의 대표적인 **비지도 학습**(Unsupervised Learning) 기 중 하나로, 데이터 간의 유사성을 기반으로 데이터를룹화하는 과정을 말합니다. 이 기법은전에 레이블이 주어지지 않은 데이터셋에 적용되며, 데이터의 숨겨진 구조나 패턴을 발견하는 데 유용합니다. 클러스터링은 고객 세분화...
# 회귀 분석## 개요 회귀 분석**( Analysis)은 통계학에서 두 이상의 변수 간의 관계를 모델링하고 분석하는 대표적인 기법이다 주로 하나의종속 변수**(응 변수, dependent variable와 하나 이상의독립 변수**(설 변수, independent variable 사이의 인과 관계 또는 상관 관를 수학적으로 표현하여, 독립 변수의 변화가 ...
# 캘리퍼스 개요 **캘리퍼스**(Caliper)는체의 길이, 두께 내경, 외경, 깊이 등을 정밀하게정하는 데 사용되는 계측 도구이다. 주로 금속 가공, 기계 공학, 제조업, 실험실 연구 등 다양한 산업 분야에서 널리 활용되며, 높은 정밀도와 사용의 편리성 덕분에 가장 기본적이면서도 중요한 측정 장비 중 하나로 평가받는다. 캘리퍼스는 아나로그(기계식)...
# 디지털 제어 디지 제어(Digital)는 아날로그 신호를지털 신호 변환하여 제어스템을 구현하는 기술로, 현대 제어공학의 핵심 분야 중 하나이다. 전통적인 아날로그 제어 시스템이 연속 시간 신호를 기반으로 동작한다면, 디지털 제어 시스템은 **샘플링된 이산 시간 신호**를 사용하여 시스템의 동작을 제어한다. 이는 마이크로프로세서, 디지털 신호 처리기(D...
# 노이즈 감소데이터 정제(Data Cleaning) 과정에서 **노이즈 감소**(Noise Reduction)는 데이터 품질을 향상시키기 위한 핵심 단계 중 하나입니다. 실제 환경에서 수집된 데이터는 다양한 외부 요인으로 인해 오류, 이상치, 불필요한 변동성 등이 포함되어 있으며, 이러한 요소를 '노이즈(noise)'라고 부릅니다. 노이즈는 데이터의 진짜...
가우스 소법 ## 개요 **가스 소거법**(Gaussianination)은 선형 연립방정을 풀기 위한 가장 대표적인 알고리즘 중 하나로, 행렬을 **기약 사다리꼴**(reduced row echelon form) 또는사다리꼴row echelon form)로 변환하여 해를 구하는 방법이다. 이 방법은 독일의 수학자 카를 프리드리히 가우스의 이름을 따 명명...
# 설명변수의 분산## 개요 회귀분석(Regression Analysis)은 종속변수(dependent variable)와 이상의 독립변수(independent variable) 간의 관계를 모델링하고 분석하는 통계적 기법이다. 이 과정에서 독립변수는 일반적으로 **설명변수**(explanatory variable) 또는 **예측변수**(predictor...
# 매치드 필링 매치드 필터링(Matched Filtering)은 신호처리 분야에서 매우 중요한법 중 하나로, 특히 잡이 존재하는 환경에서 특정 신호를 최적의 방식으로 검출하기 위해 사용된다. 이 기법은 통신, 레이더, 음성 인식,료 영상 처리 등 다양한 분야에서 널리 활용되며, 신호 대 잡음비(SNR, Signal-to-Noise Ratio)를 최대화하...
# 정규방정식 ## 개요 정규방정식(Normal Equation)은 **선형회귀**(Linear Regression) 문제를 해결하기 위한 해석적(analytical) 방법 중 하나로, 최소제곱법(Least Squares Method)을 사용하여 선형 모델의 계수를 직접 계산하는 수식이다. 이 방정식은 손실 함수인 **잔차 제곱합**(Sum of Squ...
# 회귀 방정식 개요 **회귀 방식**(Regression Equation)은 통학에서 두 개 이상의 변수 간의 관계를 수학적으로 모델링하여, 한 변수의 값을 다른 변수의 값을 기으로 예측하는 사용되는 수식입니다. 주로 독립 변수(independent variable)와 종 변수(dependent variable) 사이의관 관계를 분석하고, 이를 바탕...
# 분산 ## 개요 **분산**(Variance)은 통계학에서 데이터의 산포도, 즉 데이터 값들이 평균을 중심으로 얼마나 퍼져 있는지를 나타내는 대표적인 척도이다. 분산은 회귀분석, 추정, 가설 검정 등 다양한 통계적 분석에서 핵심적인 역할을 하며, 데이터의 변동성과 불확실성을 정량적으로 평가하는 데 사용된다. 특히 회귀분석에서는 잔차의 분산, 설명변수...
편향 ##요 머신러닝에서 **편향**(Bias)은 모델이 학습 데이터에서 실제 패턴을 얼마나 정확하게영하는지를 나타내는 중요한 개념이다. 일반적으로 편향은 모델의 예측 값과 관측 값 사이의 평균적인 차이를 의미하며, **낮은 편향**은 모델이 데이터를 잘 학습하고 있음을, **높은 편향**은 모델이 데이터의 실제 구조를 간과하고 있다는 것을 나타낸다. ...
# 산술 평균 개요 **술 평균**(arithmetic mean)은계학에서 가장 기본적이고 널리 사용되는 평균의 형태 중 하나로, 주어진 데이터 집합의 모든 값을 더 후 그 개수로 나누어 얻는 대표값이다. 일반적으로 '평균'이라고 할 때 대부분 산술 평균을 의미하며, 데이터의 중심 경향(central tendency)을 파악하는 데 핵심적인 역할을 한...
# MARD: 측정 정확도의 핵심 지표 ##요 **MARD**(Mean Absolute Relative Difference, 평균 절대 상대 오차)는 측정 기술 분야에서 측정 장치의 **정확도**(accuracy)를 평가하는 데 널리 사용되는 통계적 지표입니다. 특히 **혈당 측정 장치**, 예를 들어 연속혈당측정기(CGM, Continuous Gluc...