검색 결과

"연속성"에 대한 검색 결과 (총 62개)

최적화

기술 > 데이터과학 > 최적화 알고리즘 | 익명 | 2025-09-06 | 조회수 38

# 최적화 ## 개요 최적화(Opt)는 주어진 조건에서 가장 좋은 해를 찾는 과정을 의미하며, 데이터과학 기계학습, 공학 경제학 등 다양한 분야에서 핵심적인 역할을 한다.과학에서는 모델의 예측 성능을 향상시키기 위해 손실 함수(Loss Function)를 최소화, 제약 조건을 만족하면서 목표 함수를 극대화/극소화하는 작업이 자주 발생한다. 최적화 알고리...

수직 점근선

과학 > 수학 > 미적분학 | 익명 | 2025-09-05 | 조회수 42

# 수직 점근선 ## 개요 수직 점근선(vertical asymptote)은 함수의프가 특정 수직에 무한히까워지면서 그을 지나지 않는 현상을 말. 수직 점선은 함수가 정의되지 않거나 무한대로 발산하는 점에서 발생하며, 주로 유리함수, 로그함수, 삼각함수 등의 함수에서 관찰된다. 수직 점근선은 함수의 극한 성질을 이해하고, 그래프의 형태를 분석하는 데 중...

고차원 확장

수학 > 기하학 > 고차원 확장 | 익명 | 2025-09-05 | 조회수 34

# 고차원 확장 ##요 고차 확장(High-dimensional Extension)은 기하학에서 3차원 공간을 넘어서 4차 이상의 차원으로 개념을 확장하는 수적 접근을 의미합니다. 이는 유클리드 기하학의 기본 원리를 고차원 공간에 적용하고, 점, 선, 면, 입체와 같은 기하적 객체를 $ n $차원으로 일반화하는 것을 포함합니다. 고차원 기하는 순수 수학...

로그함수

교육 > 수학 > 대수학 | 익명 | 2025-09-05 | 조회수 36

# 로그함수 로그함수(logarithmic function) 지수함수의 역함로 정의되는 수학적 함수로, 수학 전반과 과학, 공학, 경제학 등 다양한 분야에서 중요한 역할을 한다. 로그함수는 큰 수를 다루거나 지수적인 증가·감소를 분석할 때 유용하며, 특히 데이터의 스케일을 조정하거나 복잡한 곱셈을 덧셈으로 변환하는 데 자주 사용된다. 이 문서에서는 로그함...

불연속점

교육 > 수학 > 미적분학 | 익명 | 2025-09-05 | 조회수 43

# 불연속점 ## 개요 함수의 **불연속점**(discontinuity point)은 함수가 특정 점에서 연속이 아닌 경우를 의미합니다. 미분학에서 함수의속성은 극한, 미분, 적분 등 다양한 개념의 기초가 되며, 불속점은 이러한 성질이 깨지는 지점을 분석하는 데 중요한 역할을 합니다. 불연속점은 함수의 그래프에서 '끊어짐', '점프', '무한대 발산' ...

Hyper-V

기술 > 가상화 > 가상화 플랫폼 | 익명 | 2025-09-04 | 조회수 46

# Hyper-V Hyper-V는 마이크로소프트에서 개발한 하이퍼바이저 기반의 가상화 플랫폼으로, 윈도우 서버 및 일부 버전의 데스크톱 윈도우 운영체제에서 가상 머신(VM, Virtual Machine)을 생성하고 관리할 수 있도록 지원하는 기술입니다. 하드웨어 가상화 기술을 활용하여 하나의 물리적 서버나 컴퓨터에서 여러 개의 독립적인 운영체제를 동시에 ...

해석적 표현

수학 > 함수 > 표현 방법 | 익명 | 2025-09-04 | 조회수 36

# 해석적 표현함수는 수학에서 두 집합 사이의 관계 정의하는 핵 개념으로, 다양한 방식으로 표현할 수 있다 그중 **해석적 표현**(Analytic Representation)은 함수를 수식 또는 수학적 공식을 통해 명확히 기술하는 방법을 의미한다. 이 표현식은 함수의의역과 공역 사이의 정량적 관계를 정밀하게 설명할 수 있어 수학, 물리학, 공학 등 정량적...

연속형

기술 > 데이터과학 > 데이터 유형 | 익명 | 2025-09-04 | 조회수 42

# 연속형 ## 개요 **연속형**(Continuous type은 데이터과학에서의 측정 방식과 값의 성격에 따라 분류하는 데이터 유형 중 하나로, 특정 구간 내에서 무한히 많은 값을 가질 수 있는 수치 데이터를 의미합니다. 연속형 데이터는 이산형 데이터와 대조되며, 주로 물리적 측정값(예: 길이, 무게, 온도, 시간 등)에서 나타납니다. 이 데이터 유형...

벡터화 연산

기술 > 프로그래밍 > 성능 최적화 | 익명 | 2025-09-03 | 조회수 38

# 벡터화 연산 ## 개요 **벡터화 연산**(Vectorization)은 프로그래밍과 컴퓨터 아키텍처에서 반복적인 스칼라 연산을 벡 단위로 처리하여 프램의 성능 극대화하는 기입니다. 이 기은 특히 수치 계산, 데이터 분석, 머신닝, 과학 시뮬레이션 등 대량의 데이터를 다루는 분야에서 핵심적인 성능 향상 수단으로 사용됩니다. 벡터화는 CPU의 SIMD(...

BERT

기술 > 자연어처리 > 언어 모델링 | 익명 | 2025-09-02 | 조회수 37

# BERT ##요 BERT(Bidirectional Encoder Represent from Transformers)는글(Google)이 018년에 발표한 자연어 처리(N) 분야의 획기적인 언어 모델이다.ERT는 이전의 단방향 언어 모들과 달리 **방향 맥락**(bidirectional context)을 학습함으로써 단어의 의미를 보다 정확하게 이해할...

히스토그램

기술 > 데이터시각화 > 그래프 유형 | 익명 | 2025-08-31 | 조회수 46

히스토그램 ## 개요 히스토그램(Histogram)은 **연속형 데이터**(또는 구간이 있는 이산형 데이터)의 분포를 시각적으로 표현하는 그래프 유형 중 하나로, 데이터가 특정 구간(빈, bin)에 얼마나 많이 분포되어 있는지를 막대 그래프 형태로 보여줍니다. 히스토그램은 데이터의 중심 경향, 산포도, 왜도, 이상치 등을 파악하는 데 매우 유용하며, 통...

함수

기술 > 수학 > 미적분학 | 익명 | 2025-07-30 | 조회수 47

# 함수 ## 개요 함수(function)는 수학, 특히 미적분학에서 핵심적인 개념으로, 두 집합 사이의 입력값과 출력값의 관계를 정의하는 규칙입니다. 미적분학에서는 함수의 변화율(미분)과 누적합(적분)을 분석함으로써 과학, 공학, 경제학 등 다양한 분야의 문제를 해결할 수 있습니다. 이 문서에서는 함수의 기본 정의, 특성, 종류, 미적분학에서의 활용을 ...

점근선

교육 > 수학 > 미적분학 | 익명 | 2025-07-29 | 조회수 44

# 점근선 ## 개요 점근선(Asymptote)은 수학, 특히 미적분학에서 함수의 그래프가 무한대로 발산할 때 가까워지는 직선을 의미합니다. 이는 함수의 전반적인 행동을 이해하고 그래프를 정확하게 그리는 데 중요한 역할을 합니다. 점근선은 크게 **수직 점근선**, **수평 점근선**, **기울기 점근선**으로 구분되며, 각각의 조건과 활용 방법은 서로 ...

수직점근선

교육 > 수학 > 미적분학 | 익명 | 2025-07-29 | 조회수 42

# 수직점근선 ## 개요 수직점근선(Vertical Asymptote)은 함수의 그래프가 특정 수직선 $ x = a $ 근처에서 무한대로 발산하는 현상입니다. 이는 함수가 정의되지 않은 점에서 발생하며, 미적분학에서 함수의 극한과 연속성, 불연속점 분석에 중요한 개념입니다. 수직점근선은 유리함수, 삼각함수 등 다양한 수학적 모델에서 관찰되며, 물리학과 공...

패딩

기술 > 데이터과학 > 분석 | 익명 | 2025-07-17 | 조회수 67

# 패딩 ## 개요 패딩(padding)은 데이터 분석 및 기계 학습에서 입력 데이터의 크기를 조정하거나 특정 처리 과정에 맞게 데이터를 확장하는 기법입니다. 주로 이미지 처리, 시계열 분석, 신경망 모델 구축 등 다양한 영역에서 활용되며, 데이터의 경계 정보 유지, 모델 성능 향상, 차원 일치 등을 목적으로 합니다. 패딩은 단순히 데이터를 확장하는 것이...

메모리 셀

기술 > 인공지능 > 머신러닝 | 익명 | 2025-07-16 | 조회수 50

# 메모리 셀 ## 개요 메모리 셀(Memory Cell)은 인공지능(AI) 및 기계학습(ML) 분야에서 시퀀스 데이터를 처리하는 데 핵심적인 역할을 하는 구조입니다. 특히, 시간에 따른 정보의 지속적 저장과 활용이 필요한 작업(예: 자연어 처리, 시계열 예측)에서 중요한 기능을 수행합니다. 메모리 셀은 전통적인 인공신경망(ANN)과 달리 과거 입력 데이...

무한극한

교육 > 수학 > 미적분학 | 익명 | 2025-07-16 | 조회수 52

# 무한극한 ## 개요 무한극한(infinite limit)은 수학에서 함수의 극한이 유한한 값이 아닌 **무한대(∞)**로 발산하는 경우를 의미합니다. 이 개념은 미적분학에서 함수의 행동 분석, 점근선(漸近線) 탐구, 연속성 판단 등에 핵심적인 역할을 합니다. 무한극한은 수치적으로 정의된 극한이 아닌 **함수의 성질**을 나타내며, 이는 함수가 특정 값...

극한

교육 > 수학 > 미적분학 | 익명 | 2025-07-16 | 조회수 90

# 극한 ## 개요 극한(limit)은 수학에서 함수의 행동을 분석하는 데 핵심적인 개념으로, 특정 점에 가까운 입력값에 대한 출력값의 추세를 나타냅니다. 미적분학의 기초가 되며, 도함수와 적분의 정의에 필수적이며, 물리학, 공학 등 다양한 분야에서 응용됩니다. 극한은 수렴과 발산을 이해하는 데 중요한 역할을 하며, 함수의 연속성, 미분 가능성 등...

도함수

교육 > 수학 > 미적분학 | 익명 | 2025-07-16 | 조회수 64

# 도함수 ## 개요 도함수(derivative)는 수학에서 함수의 변화율을 나타내는 개념으로, 미적분학의 핵심 주제 중 하나입니다. 특정 점에서의 순간적인 변화율이나 기울기를 계산하는 데 사용되며, 물리학, 공학, 경제학 등 다양한 분야에서 응용됩니다. 도함수를 통해 함수의 최대/최소값, 곡선의 기울기, 가속도 등을 분석할 수 있습니다. --- ##...

도함수

기술 > 수학 > 미적분학 | 익명 | 2025-07-16 | 조회수 46

# 도함수 ## 개요 도함수(derivative)는 수학에서 함수의 변화율을 나타내는 개념으로, 미적분학의 핵심 주제 중 하나이다. 특정 점에서의 순간적인 변화율이나 곡선의 접선 기울기를 계산하는 데 사용된다. 도함수는 물리학, 공학, 경제학 등 다양한 분야에서 응용되어 중요한 역할을 한다. ## 정의와 수학적 표현 ### 극한을 통한 정의 도함수는 함...