# 지수족 형태 지수족(Exponential Family Form)는 통계학에서 중요한 확률분의 수학적 구로, 많은 일반적인 확률분포들이 이 형태로 표현될 수 있다. 지수족은 추정 이론, 베이즈 통계, 일반화선형모형(GLM), 정보 이론 등 다양한 통계적 분석에서 핵심적인 역할을 하며, 수학적 처리의 용이성과 이론적 아름다움을 동시에 갖춘 구조이다. 본 ...
검색 결과
"도함수"에 대한 검색 결과 (총 66개)
# 라그랑주 표기 라그랑주 표법(Lagrange's notation)은분을 나타내는 수학 기 체계 중 하나로, 프랑스의 수학자 조제프루이 라그랑주(Joseph-Louis Lagrange의 이름을 따서 명명되었다. 표기법은의 도함수(derivative)를 표현하는 데 널리 사용되며, 특히 미적분학 교육 및 공학, 물리학 등 다양한 분야에서 흔히 등장한다. ...
# 음함수 표현 ## 개요 음함수 표현(implicit function representation)은 수학에서 두 변수 사이의 관계를 명시적으로 함수의 형태로 나타내지 않고, 두 변수가 포함된 방정식의 형태로 표현하는 방법이다. 일반적으로 함수는 독립변수 $ x $에 대해 종속변수 $ y $를 $ y = f(x) $와 같이 **양함수**(explicit...
# 주기 함수 개요 **기 함수**(Periodic)는 수학, 특히 함수론에서 매우 중요한 개념 중 하나로, 특정 간격(주기)을 두고 그 함수값이 반복되는 성질을 가진 함수 의미한다. 주기 함수는 자연현상의 반복성, 예를 들어 파동, 진동, 계절 변화 등과 밀접한 관련이 있으며, 삼각함수는 대표적인 주기 함수의 예이다. 이 문서에서는 주기 함수의 정의...
# 오목 오목은 미분학에서 함수의 그래가 가지는 곡선의 성질 중 하나로, 그래프의 **곡률 방향**을 설명하는 중요한 개념이다. 함수의 오목성(또는 볼성)은 함수의 2차 도함수의 부호를 판단할 수 있으며, 최적화 이론, 경제학, 물리학 등 다양한 분야에서 활용된다. 본 문서에서는 오목 함수의 정의, 수학적 조건, 기하학적 의미, 관련 개념 및 응용 사례를...
# 매끄러움 ## 개요수학, 특히 미분정식 이론에서 **매끄러움**(smooth)은 함수의 미분 가능성 정도를 나타내는 중요한 개념이다. 매끄러운 함수는 특정한 미분 가능성 조건을 만족하는 함수로, 미분방정식의 해가 존재하고 유일한지를 판단하거나, 해의 정규성(regularity)을 분석하는 데 핵심적인 역할을 한다. 매끄러움은 해석학적 성질 중 하나로,...
# 임계점 ## 개요 임계점(臨界, 영어: critical point) 미분학에서 함수의 국소적 성질을 분석하는 데 핵심적인 개념이다. 함수의 그래프에서 극값(극대 또는 극소)이 존재할 수 있는 후보 지점으로, 함수의 변화율이 0이 되거나 미분이 존재하지 않는 점을 의미한다. 임계점은 함수의 증가와 감소가 전환되는 지점, 즉 극값을 찾는 데 매우 중요한...
# 치역 ## 개요 **치역**(range)은 함수 출력값, 즉에 의해 정의역의 원소들이 대응되는 값들의 집합을 의미한다. 수학, 특히 미적분학에서 치은 함수의 행동과 성질을 분석하는 데 핵심적인 개념 중 하나이다. 함수 $ f: A \to B $가 주어졌을 때, 정의역 $ A $의 각 원소 $ x $에 대해 $ f(x) $의 값이 존재하며, 이러한 모...
# 편미분방정식 ## 개요 편미방정식(Partial Differential Equation,DE)은 두 개 이상의립 변수를 갖는와 그 함수의 **편미분**(partial derivative)들 사이의 관계를 나타내는 수학적 방정식입니다. 일반 미분방정식(ODE)이 하나의 독립 변수(예: 시간)에 대한 함수의 도함수를 다룬다면, 편미분방정식은 공간과 시간...
# 변곡점 ## 개요 변곡점(變曲點, inflection point)은 함수 그래프가 **오목에서 볼록으로**, 또는 **볼록에서 오목으로** 변하는 지점을 의미한다. 즉, 함수의 **곡률**(curvature)이 부호를 바꾸는 점으로, 그래프의 형태가 변하는 전환점이라 할 수 있다. 변곡점은 미분학에서 함수의 그래프를 분석하고 해석하는 데 중요한 역할...
# PDF ## 개요 PDF는 " Density Function"의 약자로, 한국어로는 **확률밀도함수**(確率密度函數라고 한다. 통학과 확률론에서 연속 확률변수의 확률 분포를 설명하는 데 핵심적인 역할을 하는 함수이다. PDF는 특정 값에서 확률변수가 나타날 **상대적인 가능성**을 나타내며, 연속 확률변수의 확률을 구할 때는 특정 구간에 대한 함수의...
# PDF ## 개요 **PDF**(Probability Density Function, 확률 밀도 함수)는 **확론**과 **통계학** 연속 확률 변수의 확률 분포를 설명하는 핵심 개념이다. 이 함수는 특정 값에서 확률 변수가 나타날 **상대적 가능도**를 나타내며, 확률 변수가 특정 구간에 속할 확률을 그 구간에서의 PDF의 적분을 통해 계산할 수 ...
# 시그모이드 함수 ## 개요 시모이드 함수(Sigmoid Function)는 S자 형태의 곡선을 가지는 수학적 함수로, 특히 인공지능, 통계학, 생물학, 그리고 수학 교육 등 다양한 분야 중요한 역할을. 이 함수는 입력값이 매우 작을 때 출력값이 0에 가까워지고, 입력값이 매우 클 때는 출력값이 1에 가까워지는 특성을 가지며, 중간 영역에서는 부드러운...
# 경계값 문제 ## 개요 **경계값 문제**(Boundary Value Problem, BVP)는 미분방정식의 해를 구하는 과정에서, 특정 구간의 **경계**(boundary)에서 해가 만족해야 하는 조건을 제시하는 수적 문제이다. 이는 **초기값 문제**(Initial Value Problem, IVP)와 대비되는 개념으로, 초기값 문제는 독립변수의...
# 뉴턴 방법 ##요 **뉴턴 방법**(Newton Method), 또는 **뉴턴-랍슨 방법**(Newton-Raphson Method)은 비선형 방정식의 근을 수치적으로 근사하는 데 사용되는 강력한 반복 최적화 알고리즘. 이 방법은 미분 가능한 함수에 대해 초기 추정값에서 출발하여 접선을 이용해 점차 정확한 해에 수렴하도록 설계되어 있으며, 특히 수치...
# 다변수 체인 규칙 다변수 체인 규칙(Multivariable Chain Rule)은 다변수 미적분학에서 중요한 도구 중 하나로, **여러 변수에 의존하는 함수의 합성 함수를 미분할 때 사용되는 법칙입니다. 이 규칙은 단일 변수 함수의 체인 규칙을 다변수 함수로 확장한 것으로, 물리학, 공학, 경제학 등 다양한 분야에서 함수의 변화율을 분석할 때 핵심적...
# 라플라스 방정식 라플라스 방정식(Laplace's Equation)은 수학, 특히 편미분방정식과 수리물리학에서 매우 중요한할을 하는 타원형 편미분방정식의 대표적인 예입니다. 이 방정식은 정적인리적 현상, 즉 시간에 따라 변하지 않는 평형 상태를 기술하는 데 널리 사용되며, 전기학, 중력장, 유체역학, 열전도 등 다양한 분야에서 등장합니다. 라플라스 방...
# 헤시안 행렬 헤시안 행렬(Hessian Matrix)은 다변수 실수값 함수의 **이계도함수**(second-order partial derivatives)를 정사각형 행렬 형태로 배열한 것으로, 함수의 국소적 곡률 정보를 제공하는 중요한 수학적 도구입니다. 선형대수학과 최적화 이론, 머신러닝, 물리학 등 다양한 분야에서 널리 사용되며, 특히 함수의 극...
# 최적화 ## 개요 최적화(Opt)는 주어진 조건에서 가장 좋은 해를 찾는 과정을 의미하며, 데이터과학 기계학습, 공학 경제학 등 다양한 분야에서 핵심적인 역할을 한다.과학에서는 모델의 예측 성능을 향상시키기 위해 손실 함수(Loss Function)를 최소화, 제약 조건을 만족하면서 목표 함수를 극대화/극소화하는 작업이 자주 발생한다. 최적화 알고리...
# 가속도 ## 개요 **가속도**(acceleration)는 물체의 속도가 시간에 따라 변화하는 정도를 나타내는 물리량이다. 속도는 크기와 방향을 가지는 벡터이므로, 가속도 역시터량이며, 속도의 크기 변화뿐 아니라 방향 변화도 포함한다. 유체역학을 비롯한 물리학 전반에서 가속도는 운동을 설명하는 핵심 개념 중 하나이며, 뉴턴의 운동 법칙과 밀접한 관련...