검색 결과

"스칼라"에 대한 검색 결과 (총 21개)

행렬-벡터 연산

기술 > 데이터과학 > 행렬-벡터연산 | 익명 | 2025-09-13 | 조회수 2

# 행렬-벡터 연산 행렬-벡터산은 선형대수의 핵심 개념 중 하나로, 데이터과학 머신러닝, 컴퓨터 그래픽스, 물리학 등 다양한 분야에서 광범위하게 활용됩니다. 특히 고차원 데이터를 처리하고 변환하는 데 있어 행렬과 벡터의 연산은 계산 효율성과 수학적 표현의 간결성을 제공합니다. 본 문서에서는 행렬-벡터 연산의 정의, 기본 연산 종류 계산 방법, 활용 사례 ...

Basic Linear Algebra Subprograms

기술 > 수학 > 선형대수 | 익명 | 2025-09-13 | 조회수 3

# Basic Linear Algebra Subprograms **Basic Linear Algebra Subprograms**(BL)는 선형대수 계을 위한 기본적인 연산들을 표화한 인터페이스 사양이다. BLAS는 벡터와렬의 덧셈 스칼라 곱, 내적, 행렬-벡터 곱, 행렬-행렬 곱 등과 같은 수치 선형대수의 핵심 연산들을 정의하며, 과학 계산, 머신러닝, ...

여인자 전개

수학 > 선형대수학 > 행렬식 계산 방법 | 익명 | 2025-09-12 | 조회수 3

# 여인자 전개 여인자 전개(Cofactor), 또는 라플라스 전개(Laplace Expansion)는 선형대수학 정사각행렬의 **행렬식**(determinant)을 계산하는 대표적인 방법 중 하나입니다. 이 방법은 행렬의 특정 행 또는 열의 원소들과 그에 대응하는 **여인자**(cofactor)를 곱하여 더함으로써 행렬식을 구하는 방식입니다. 특히 크기...

행렬식

수학 > 선형대수학 > 행렬식 | 익명 | 2025-09-12 | 조회수 3

행렬식 행렬식**(式, Determinant)은 선형대수학에서 정방행렬(square matrix)에 대응되는 하나의 스칼라 값으로, 행렬의 여러 중요한 성질을 판별하는 데 핵심적인 역할을 한다. 행렬식은 행렬이 가역(invertible)인지 여부, 선형 방정식의 해의 존재성, 벡터 공간에서의 기하학적 해석(예: 부피 변화율) 등과 밀접한 관련이 있다. 이...

벡터 연산

기술 > 데이터과학 > 벡터연산 | 익명 | 2025-09-11 | 조회수 1

# 벡터 연산 벡터 연산(Vector Operation)은 데이터과학, 기계학습, 물리학, 컴퓨터 그래픽스 등 다양한 분야에서 핵심적인 역할을 하는 수학적 도구입니다. 특히 고차원 데이터를 처리하는 데이터과학에서는 벡터를 통해 데이터 포인트를 표현하고, 이를 기반으로 유사도 계산, 차원 축소, 모델 학습 등의 작업을 수행합니다. 본 문서에서는 벡터 연산의...

L∞ 노름

수학 > 선형대수학 > 노름 | 익명 | 2025-09-11 | 조회수 2

# L∞ 노름 ## 개요 L∞ 노름-infinity norm), **최대 노름**(maximum norm), **균등 노름**(uniform norm), **서프리멈 노름**(supremum norm)은 벡터 공간 또는 함수 공간에서 벡터나 함수의 크기를 측정하는 방법 중 하나로, 선형대수학과 함수해석학에서 중요한 역할을 한다. L∞ 노름은 벡터의 성분...

SSE2

기술 > 컴퓨터과학 > 명령어집합 | 익명 | 2025-09-10 | 조회수 2

# SSE2 **SSE2**(Streaming SIMD Extensions 2)는 인텔이 2001년에 펜티엄 4 프로세서와 함께 도입한 SIMDingle Instruction, Multiple Data)령어 집합의 확장판입니다. SSE2는 이전의 SSE(SSE1)를 보완하고, MMX 및 x87 부동소수점 연산의 많은 제한을 극복하기 위해 설계되었으며, 특...

다변수 체인 규칙

수학 > 다변수 미적분학 > 체인 규칙 | 익명 | 2025-09-07 | 조회수 6

# 다변수 체인 규칙 다변수 체인 규칙(Multivariable Chain Rule)은 다변수 미적분학에서 중요한 도구 중 하나로, **여러 변수에 의존하는 함수의 합성 함수를 미분할 때 사용되는 법칙입니다. 이 규칙은 단일 변수 함수의 체인 규칙을 다변수 함수로 확장한 것으로, 물리학, 공학, 경제학 등 다양한 분야에서 함수의 변화율을 분석할 때 핵심적...

라플라스 방정식

수학 > 미적분학 > 타원형 방정식 | 익명 | 2025-09-07 | 조회수 4

# 라플라스 방정식 라플라스 방정식(Laplace's Equation)은 수학, 특히 편미분방정식과 수리물리학에서 매우 중요한할을 하는 타원형 편미분방정식의 대표적인 예입니다. 이 방정식은 정적인리적 현상, 즉 시간에 따라 변하지 않는 평형 상태를 기술하는 데 널리 사용되며, 전기학, 중력장, 유체역학, 열전도 등 다양한 분야에서 등장합니다. 라플라스 방...

헤시안 행렬

기술 > 수학 > 선형대수학 | 익명 | 2025-09-07 | 조회수 7

# 헤시안 행렬 헤시안 행렬(Hessian Matrix)은 다변수 실수값 함수의 **이계도함수**(second-order partial derivatives)를 정사각형 행렬 형태로 배열한 것으로, 함수의 국소적 곡률 정보를 제공하는 중요한 수학적 도구입니다. 선형대수학과 최적화 이론, 머신러닝, 물리학 등 다양한 분야에서 널리 사용되며, 특히 함수의 극...

루프 벡터화

기술 > 컴파일러 > 최적화 기법 | 익명 | 2025-09-07 | 조회수 4

# 루프 벡터화 ## 개요 **루프 벡터화**(Loop Vectorization)는 컴파일러 최적화 기법 중 하나로, 반복문(루프) 내에서되는 연산을 벡터 연산으로 변환함으로써 프로그램의 실행 속도를 향상시키는 기술이다. 이 기법은 현대 CPU가 제공하는 SIMD(Single Instruction, Multiple Data) 아키텍처를 활용하여, 여러 ...

연쇄 법칙

교육 > 수학 > 기하학 | 익명 | 2025-09-05 | 조회수 7

# 연쇄 법칙 ## 개요 **연쇄 법칙**( Rule)은 미적분학에서 합성함수의 도함수를 구하는 데 사용되는 핵심적인 법칙이다. 특히 기하학과 수학반에서 곡선, 곡면, 다변수 함수의 기울기와 변화율을 분석할 때 중요한 역할을 한다. 연쇄 법칙은 단순한 함수의 미분을 넘어서, 복잡한 함수 구조를 해석하고 계산하는 데 필수적인 도구로, 고등학교 수학부터 대...

L2 노름

수학 > 선형대수학 > 노름 | 익명 | 2025-09-03 | 조회수 7

# L2 노름## 개요 **L2 노름L2 norm) 벡터 공간에서 벡터의 크기 또는 길이를 측정하는 방법 중 하나로, 선형수학, 기계학습, 신호, 수치해 등 다양한 분야에서 널리 사용되는 중요한 개념이다. L2 노름은 유클리드 노름(Euclidean norm)이라고도 하며, 일반적인 직관적인 '' 개념과 일한다. 이 문서에서는2 노름의의, 수학 표현, 성...

트레이트

기술 > 프로그래밍 > 고급타입시스템 | 익명 | 2025-09-03 | 조회수 10

# 트레이트 () ## 개요 **트레이트**()는 객체지 프로그래밍과형 프로그래의 경계를나드는 고급 타입 시스템에서 중요한 개념으로, 특정 타입이 가져야 할 동작(메서드)이나 속성을 정의하는 추상적 인터페이스입니다. 트레이트는 단순한 인터페이스를 넘어서 재사용 가능한 코드 조각으로서의 기능도 수행하며, 다중 상속의 문제를 안전하게 해결하는 데 유용하게 ...

텐서

기술 > 데이터구조 > 텐서 | 익명 | 2025-09-03 | 조회수 10

# 텐서 ## 개요 **텐서**(Tensor)는 수학 및 컴퓨터 과학, 특히 머신러닝과 딥러닝 분야 핵심적인 개념, 다차원 배열 일반화한 수적 구조입니다 텐서는 스칼, 벡터,렬의 개념을 확장하여 N차원 데이터를 표현할 수 있으며, 현대 인공지능(AI) 시스템의 연산 기반을 이루는 중요한 **데이터 구조**입니다. 텐서는 주로 딥러닝 프레임워크(예: Te...

벡터화 연산

기술 > 프로그래밍 > 성능 최적화 | 익명 | 2025-09-03 | 조회수 5

# 벡터화 연산 ## 개요 **벡터화 연산**(Vectorization)은 프로그래밍과 컴퓨터 아키텍처에서 반복적인 스칼라 연산을 벡 단위로 처리하여 프램의 성능 극대화하는 기입니다. 이 기은 특히 수치 계산, 데이터 분석, 머신닝, 과학 시뮬레이션 등 대량의 데이터를 다루는 분야에서 핵심적인 성능 향상 수단으로 사용됩니다. 벡터화는 CPU의 SIMD(...

SciPy

기술 > 데이터과학 > 분석 | 익명 | 2025-08-31 | 조회수 10

# SciPy ## 개요 **SciPy**(Science Python)는 과학적 및 기술적 계산을 위한 파이썬 기반의 오픈소스 소프트웨어 생태계의 핵심 구성 요소 중 하나입니다 SciPy는 수치 계산, 최적화, 선형 대수, 적분, 보간, 신호 처리, 통계 분석 등 다양한 수학적 및 과학적 문제 해결을 위한 강력한 함수와 알고리즘을 제공합니다. SciPy...

NumPy

기술 > 프로그래밍 > Python | 익명 | 2025-08-30 | 조회수 13

# NumPy ## 개요 **NumPy**(Numerical Python)는 파이썬에서 과학적 계산 및 수치 해석을 위한 핵심 라이브리 중 하나로, 고성능의 다차원 배열 객체(`ndarray`)와 이를 효율적으로 처리할 수 있는 함수들을 제공합니다. NumPy는 데이터 분석, 기계 학습, 수치 시뮬레이션, 이미지 처리 등 다양한 분야에서 기반이 되는 도...

YAML

기술 > 프로그래밍 > 언어 | 익명 | 2025-07-31 | 조회수 16

# YAML ## 개요 YAML(YAML Ain't Markup Language)은 인간이 읽기 쉬운 데이터 직렬화 형식입니다. 주로 구성 파일(config files) 및 다중 언어 간 데이터 교환에 사용되며, XML이나 JSON과 비교해 간결하고 직관적인 문법을 특징으로 합니다. 2001년에 처음 제안된 이후 Docker, Kubernetes, CI/...

선형 연산

기술 > 데이터과학 > 분석 | 익명 | 2025-07-30 | 조회수 7

# 선형 연산 ## 개요 선형 연산(Linear Operation)은 데이터 과학과 분석 분야에서 핵심적인 수학적 도구로, 선형 대수학(Linear Algebra)의 기본 원리를 기반으로 합니다. 이 연산은 행렬, 벡터, 스칼라 등을 활용해 데이터의 구조를 변환하거나 패턴을 추출하는 데 사용되며, 머신러닝, 통계 분석, 최적화 문제 등 다양한 분야에 적용...