검색 결과

"수학"에 대한 검색 결과 (총 101개)

대수학

교육 > 수학 > 대수학 | 익명 | 2025-07-16 | 조회수 12

# 대수학 ## 개요 대수학(algebra)은 수학의 한 분야로, 수와 기호를 사용하여 수량 간의 관계를 추상화하고 일반화하는 학문이다. 이는 단순한 계산을 넘어 변수, 방정식, 함수 등 복잡한 구조를 탐구하며, 과학, 공학, 컴퓨터 과학 등 다양한 분야에서 필수적인 도구로 활용된다. 대수학은 고대부터 현대까지 수많은 수학자들의 연구를 통해 발전해왔으며,...

수학

교육 > 수학 > 기초수학 | 익명 | 2025-07-15 | 조회수 39

# 수학 ## 개요 수학은 양, 구조, 공간 및 변화와 같은 추상적 개념을 탐구하는 체계적인 학문이다. 고대부터 현대까지 인간의 사고와 과학 기술 발전에 깊이 관여하며, 자연과학, 공학, 경제학 등 다양한 분야에서 필수적인 도구로 활용된다. 수학은 **기초수학**과 **심화수학**으로 나뉘며, 본 문서에서는 기초수학의 핵심 개념과 역사적 배경을 중심으로 ...

모듈

기술 > 소프트웨어 > 모듈 기반 위키 | 익명 | 2025-07-31 | 조회수 3

# 모듈 ## 개요 **모듈**(Module)은 소프트웨어 개발에서 특정 기능을 구현하고 재사용 가능한 단위로 구성된 독립적인 코드 집합입니다. 모듈화는 복잡한 시스템을 작은 구성 요소로 분할하여 관리 및 유지보수를 용이하게 하는 핵심 설계 패턴입니다. 이 문서에서는 소프트웨어 모듈의 개념, 특징, 활용 사례, 그리고 주요 언어별 모듈 시스템을 다룹니다....

제곱근

교육 > 수학 > 고등수학 | 익명 | 2025-07-31 | 조회수 5

# 제곱근 ## 개요 제곱근은 수학에서 중요한 개념으로, 어떤 수를 제곱하여 원래의 수를 얻을 수 있는 수를 의미합니다. 예를 들어, 2는 4의 제곱근이 되며, 3은 9의 제곱근입니다. 이 문서에서는 제곱근의 정의, 성질, 계산 방법, 응용 분야 등을 체계적으로 설명하며, 고등학교 수학 수준의 이해를 돕기 위해 구성되었습니다. ## 제곱근의 정의 ###...

디지털 서명

기술 > 블록체인 > 핵심 개념 | 익명 | 2025-07-31 | 조회수 9

# 디지털 서명 ## 개요 디지털 서명(Digital Signature)은 **전자문서 또는 데이터의 진위성, 무결성, 부인방지(Non-repudiation)**를 보장하기 위해 암호학적 기법을 활용하는 기술입니다. 특히 블록체인 기술에서 디지털 서명은 거래(Transaction)의 신뢰성을 확보하는 핵심 요소로 작용합니다. 이 문서에서는 디지털 서명의 ...

드롭아웃

기술 > 데이터과학 > 분석 | 익명 | 2025-07-30 | 조회수 1

# 드롭아웃 ## 개요 드롭아웃(Dropout)은 신경망 학습 과정에서 과적합(Overfitting)을 방지하기 위해 제안된 정규화(Regularization) 기법이다. 이 방법은 2012년 Hinton과 동료들이 발표한 논문에서 처음 소개되었으며, 신경망의 일부 뉴런을 무작위로 제거하면서 학습을 진행하는 방식으로 네트워크의 일반화 성능을 향상시킨다. ...

선형 연산

기술 > 데이터과학 > 분석 | 익명 | 2025-07-30 | 조회수 3

# 선형 연산 ## 개요 선형 연산(Linear Operation)은 데이터 과학과 분석 분야에서 핵심적인 수학적 도구로, 선형 대수학(Linear Algebra)의 기본 원리를 기반으로 합니다. 이 연산은 행렬, 벡터, 스칼라 등을 활용해 데이터의 구조를 변환하거나 패턴을 추출하는 데 사용되며, 머신러닝, 통계 분석, 최적화 문제 등 다양한 분야에 적용...

셀프-어텐션

기술 > 인공지능 > 머신러닝 | 익명 | 2025-07-30 | 조회수 6

# 셀프-어텐션 ## 개요 셀프-어텐션(Self-Attention)은 인공지능 분야에서 시퀀스 데이터의 상호작용을 모델링하는 데 사용되는 핵심적인 기술입니다. 특히 **트랜스포머(Transformer)** 아키텍처의 핵심 구성 요소로, 자연어 처리(NLP) 및 컴퓨터 비전(CV) 등 다양한 분야에서 혁신을 이끌었습니다. 이 메커니즘은 입력 시퀀스 내 모든...

데이터 편향

기술 > 인공지능 > 머신러닝 | 익명 | 2025-07-30 | 조회수 2

# 데이터 편향 ## 개요 데이터 편향(Data Bias)은 머신러닝 모델 훈련에 사용되는 데이터셋에 시스템적으로 왜곡된 패턴이 존재하는 현상으로, 모델의 예측 결과에 불공정성이나 오류를 유발할 수 있습니다. 이러한 편향은 데이터 수집, 전처리, 모델링 전 단계에서 발생할 수 있으며, 사회적 불평등을 심화시키거나 법적 문제를 야기할 수 있습니다. 예를 들...

논리적 연산

기술 > 데이터과학 > 분석 | 익명 | 2025-07-30 | 조회수 4

# 논리적 연산 ## 개요 논리적 연산(Logical Operation)은 컴퓨터 과학과 데이터 과학의 기반을 이루는 수학적 연산으로, 참(True)과 거짓(False)의 이진 값을 기반으로 복잡한 조건을 처리합니다. 이 연산은 데이터 분석, 알고리즘 설계, 인공지능 모델 개발 등 다양한 분야에서 필수적인 역할을 하며, 특히 데이터 과학에서는 데이터 필터...

AEAD

기술 > 암호화 > 암호화 모드 | 익명 | 2025-07-30 | 조회수 5

# AEAD ## 개요 AEAD(**Authenticated Encryption with Associated Data**)는 암호화와 인증을 동시에 제공하는 암호화 모드입니다. 전통적인 암호화 방식이 데이터 기밀성만 보장했다면, AEAD는 **기밀성**, **무결성**, **신원 인증**을 통합적으로 처리합니다. 이 문서에서는 AEAD의 개념, 작동 원리...

함수

기술 > 수학 > 미적분학 | 익명 | 2025-07-30 | 조회수 6

# 함수 ## 개요 함수(function)는 수학, 특히 미적분학에서 핵심적인 개념으로, 두 집합 사이의 입력값과 출력값의 관계를 정의하는 규칙입니다. 미적분학에서는 함수의 변화율(미분)과 누적합(적분)을 분석함으로써 과학, 공학, 경제학 등 다양한 분야의 문제를 해결할 수 있습니다. 이 문서에서는 함수의 기본 정의, 특성, 종류, 미적분학에서의 활용을 ...

비볼록 최적화

기술 > 데이터과학 > 분석 | 익명 | 2025-07-30 | 조회수 3

```markdown # 비볼록 최적화 ## 개요 비볼록 최적화(Non-convex Optimization)는 데이터과학과 기계학습에서 핵심적인 역할을 하는 수학적 최적화 문제입니다. 볼록 최적화 문제와 달리, 비볼록 문제는 여러 국소 최소값(Local Minima)과 안장점(Saddle Point)을 가질 수 있어 해법 도출이 복잡합니다. 특히 딥러닝,...

연속성

교육 > 수학 > 미적분학 | 익명 | 2025-07-30 | 조회수 3

# 연속성 ## 개요 **연속성**(Continuity)은 미적분학에서 함수의 중요한 성질 중 하나로, 함수 그래프가 끊김 없이 매끄럽게 연결되어 있음을 의미합니다. 이 개념은 극한과 밀접하게 연관되어 있으며, 함수의 행동을 예측 가능하게 만드는 기초가 됩니다. 연속성은 수학적 분석뿐만 아니라 물리학, 공학, 경제학 등 다양한 분야에서 모델링에 필수적인 ...

체인 규칙

기술 > 수학 > 미적분학 | 익명 | 2025-07-30 | 조회수 1

# 체인 규칙 ## 개요 체인 규칙(Chain Rule)은 미적분학에서 합성 함수의 도함수를 구하는 핵심적인 방법론입니다. 이 규칙은 외부 함수와 내부 함수의 변화율을 곱하여 전체 함수의 변화율을 계산하는 방식으로, 과학 및 공학 분야에서 복잡한 함수의 미분을 단순화하는 데 널리 사용됩니다. 예를 들어, $ f(g(x)) $ 형태의 함수에서 $ x $에 ...

치역

교육 > 수학 > 기하학 | 익명 | 2025-07-29 | 조회수 4

# 치역 ## 개요 **치역**(range)은 수학, 특히 함수와 기하학에서 중요한 개념으로, 함수가 **정의역**(domain)의 입력값에 대해 실제로 출력하는 값들의 집합을 의미합니다. 치역은 **공역**(codomain)과 구분되어야 하며, 공역은 함수가 가질 수 있는 모든 가능한 출력값의 집합이지만 치역은 실제로 함수에 의해 "달성되는" 값들만 포...

점근선

교육 > 수학 > 미적분학 | 익명 | 2025-07-29 | 조회수 3

# 점근선 ## 개요 점근선(Asymptote)은 수학, 특히 미적분학에서 함수의 그래프가 무한대로 발산할 때 가까워지는 직선을 의미합니다. 이는 함수의 전반적인 행동을 이해하고 그래프를 정확하게 그리는 데 중요한 역할을 합니다. 점근선은 크게 **수직 점근선**, **수평 점근선**, **기울기 점근선**으로 구분되며, 각각의 조건과 활용 방법은 서로 ...