# 치역 ## 개요 **치역**(range)은 수학, 특히 함수와 기하학에서 중요한 개념으로, 함수가 **정의역**(domain)의 입력값에 대해 실제로 출력하는 값들의 집합을 의미합니다. 치역은 **공역**(codomain)과 구분되어야 하며, 공역은 함수가 가질 수 있는 모든 가능한 출력값의 집합이지만 치역은 실제로 함수에 의해 "달성되는" 값들만 포...
검색 결과
"Calculus: Early Transcendentals"에 대한 검색 결과 (총 26개)
# 점근선 ## 개요 점근선(Asymptote)은 수학, 특히 미적분학에서 함수의 그래프가 무한대로 발산할 때 가까워지는 직선을 의미합니다. 이는 함수의 전반적인 행동을 이해하고 그래프를 정확하게 그리는 데 중요한 역할을 합니다. 점근선은 크게 **수직 점근선**, **수평 점근선**, **기울기 점근선**으로 구분되며, 각각의 조건과 활용 방법은 서로 ...
# 부분적분 ## 개요 부분적분(部分積分, Integration by Parts)은 미적분학에서 곱의 미분법을 기반으로 한 적분 기술로, 복잡한 함수의 곱을 포함하는 적분을 단순화하여 계산하는 데 사용됩니다. 이 방법은 특히 다항식과 삼각함수, 지수함수, 로그함수의 곱 형태로 주어진 적분 문제에 효과적입니다. 본 문서에서는 부분적분의 공식 유도, 적용 방...
# 수직점근선 ## 개요 수직점근선(Vertical Asymptote)은 함수의 그래프가 특정 수직선 $ x = a $ 근처에서 무한대로 발산하는 현상입니다. 이는 함수가 정의되지 않은 점에서 발생하며, 미적분학에서 함수의 극한과 연속성, 불연속점 분석에 중요한 개념입니다. 수직점근선은 유리함수, 삼각함수 등 다양한 수학적 모델에서 관찰되며, 물리학과 공...
# 나눗셈 규칙 ## 개요 나눗셈 규칙(Quotient Rule)은 미적분학에서 두 함수의 비(商)를 미분할 때 사용하는 기본적인 도함수 계산법이다. 이는 분자와 분모가 각각 다른 함수로 구성된 경우, 단순히 분자와 분모를 따로 미분한 후 나누는 것이 아니라, 특정 공식을 통해 정확하게 도함수를 구할 수 있도록 한다. 본 문서에서는 나눗셈 규칙의 ...
# 미분법 ## 개요 미분법은 수학에서 함수의 변화율을 분석하는 기초적인 도구로, 미적분학의 핵심 주제 중 하나이다. 이는 특정 점에서의 순간 변화량(도함수)을 계산하여 함수의 성질을 탐구하는 방법으로, 물리학, 공학, 경제학 등 다양한 분야에서 응용된다. 미분법은 17세기 뉴턴과 라이프니츠에 의해 독립적으로 개발되었으며, 현대 수학의 기초를 형성하는 중...