검색 결과

"적분"에 대한 검색 결과 (총 109개)

명시적 방법

기술 > 수치해석 > 편미분방정식 해법 | 익명 | 2025-12-03 | 조회수 16

# 명시적 방법 ## 개요 **명시적 방법**(Explicit Method)은 수치해석에서 편미분방정식(PDE, Partial Differential Equation)을 시간에 따라 수치적으로 해를 구하는 기법 중 하나로, 미래 시간 단계의 해를 현재 또는 과거의 정보만을 사용하여 **직접 계산**할 수 있는 방법을 말한다. 이 방법은 계산 구조가 간단...

에르미트 다항식

수학 > 직교 다항식 > 에르미트 다항식 | 익명 | 2025-11-23 | 조회수 10

# 에르미트 다항식 에르미트 다항식(Hermite polynomial)은 수학, 특히 직교 다항식 이론과 양자역학, 확률론 등 다양한 분야에서 중요한 역할을 하는 특수함수의 일종입니다. 이 다항식은 프랑스의 수학자 샤를 에르미트(Charles Hermite)의 이름을 따서 명명되었으며, 가우스 함수를 가중치로 갖는 직교성을 지닌 다항식 계열에 속합니다. ...

속도 제어

기술 > 제어공학 > 응용 제어 | 익명 | 2025-10-31 | 조회수 23

# 속도 제어 ## 개요 **속도 제어Speed Control)는 기계 시템이나 전동기와 같은 동력 장치의 회전 속도 또는 직선 운동 속도를 목표값에 맞추어 안정적으로 유지하거나 조절하는 제어 기법을 의미한다. 이는 제어공학의 핵심 응용 분야 중 하나로, 산업 자동화, 로봇 공학, 전기차, HVAC 시스템 등 다양한 분야에서 널리 사용된다. 속도 제어는...

행동적 세분화

경제 > 시장 및 비즈니스 > 마케팅 전략 | 익명 | 2025-10-24 | 조회수 25

# 행동적 세분화 ## 개요 **행동적분화**(Behavioral Segmentation)는 마케팅 전략에서비자의 구매 행동, 사용 패턴, 브랜드 상호용, 제품 사용도, 충성도 수준 등 **실제 행동 기반**으로 시장을 나누는 방법이다. 이는 소비자의 심리적 특성이나 인구통계학적 정보가 아닌, **실제 선택과 행동**을 중심으로 분석하기 때문에 마케팅 ...

암시적 방법

기술 > 수치해석 > 편미분방정식 해법 | 익명 | 2025-10-08 | 조회수 23

# 암시적 방법 ## 개요 **암시적 방법Implicit Method)은치해석에서 편분방정식DE)을 해하는 대표적인 시간 적분 기법 중 하나로, 주로 시간에 대한 변화를 포함하는 열전도 방정식 나비에-스토크스 방정식 등과 같은 시간 종속적 편미분방정식의 수치 해를 구하는 데 사용된다. 암시적 방법은 명시적 방법(Explicit Method)과 대조되며,...

그래프 표현

수학 > 미적분학 > 함수 | 익명 | 2025-10-06 | 조회수 25

# 그래프 표현 함수의 **그래프 표현**(Graphical Representation)은 함수의 정의역과 공역 사이의 관계를 시각적으로 나타내는 방법으로, 미적분학에서 매우 중요한 도구 중 하나입니다. 함수의 그래프를 통해 함수의 성질, 변화 양상, 극값, 연속성, 미분 가능성 등을 직관적으로 파악할 수 있으며, 복잡한 수학적 개념을 이해하고 설명하는 ...

주파수 응답법

기술 > 제어공학 > 제어 설계 | 익명 | 2025-10-06 | 조회수 24

# 주파수 응답법 ## 개요 **주파 응답법**( Response Method)은 제어공학에서 시스의 동적 특성을 주파수 영역에서 분석하고 제어 설계하는 데되는 핵심적인 기법. 이 방법은스템에 정현파(sinusoidal 입력을 가했을 때, 출력 정적 상태에달한 후의 진폭 비과 위상 차를 주파수의로 표현함으로 시스템의 특성을악한다. 주수 응답법은로 선형 ...

로피탈의 정리

교육 > 수학 > 미적분학 | 익명 | 2025-10-04 | 조회수 21

# 로피탈의 정리 로피탈의 정리(L'Hpital's Rule)는적분학에서한을 구할 때용하게 사용되는리 중 하나로 특정 조건 하에서 부정형(indeterminate form)의 극한을 미을 통해 계산 수 있도록 해줍니다. 특히, $\frac{0}{0}$ 또는 $\frac{\infty}{\infty}$ 형태의 극한을룰 때 자주 활용되며, 복잡한 함수의 극한을...

수치 연산

과학 > 수학 > 수치해석 | 익명 | 2025-09-30 | 조회수 29

# 수치 연산 개요 **수치 연산**(ical Computation) 수학적 문제를 근사적으로 해결하기 위해 실수나 부동소수점 수를 사용하여 계산을 수행하는 과정을 의미합니다. 이는 해석학적 방법으로 정확한 해를 구하기 어려운 복잡한 수학 문제, 특히 미분 방정식, 선형 대수, 적분, 최적화 등에 대해 컴퓨터를 이용해 근사해를 구하는 데 핵심적인 역할...

방향도함수

수학 > 다변수 미적분학 > 방향도함수 | 익명 | 2025-09-28 | 조회수 23

# 방향도함수 방향도함수(方向導數, Directional Derivative)는 다변수 미적분학에서 개념 중 하나로, 함수가 방향으로 변화하는 비율을 나타냅니다. 단순 좌표축 방향(예: x, y축)으로의 변화율인 편미분을 일반화하여, 임의의 방향으로의 변화율을 계산할 수 있게 해줍니다. 이는 함수의 기울기와 최적화, 물리학적 모델링 등 다양한 분야에서 핵...

과학기술 계산

기술 > 수치계산 > 과학 컴퓨팅 | 익명 | 2025-09-27 | 조회수 27

# 과학기술 계산 과학기술 계산(Scientific)은 과학 및 공학 분야의 복잡한 문제를 수치적 방법과 컴퓨터 시뮬레이션을 통해 해결하는 학제 간 기술 영역입니다. 이 분야는 수학, 물리학, 컴퓨터 과학, 공학 등 다양한 분야의 지식을 융합하여 실험적 또는 이론적 접근만으로는 해결하기 어려운 문제를 분석하고 예측하는 데 핵심적인 역할을 합니다. 현대 과...

미분가능

수학 > 미적분학 > 미분학 | 익명 | 2025-09-26 | 조회수 28

미분가능미분가능(differentiable)은 미분학에서 매우 개념으로, 함수의 특정 지에서 접선이 존재하고 그 지점에서의 기울기를 잘 정의할 수 있는 성질을 의미한다. 이는 함수의 국소적인율을 분석하는 데 핵심적인 역할 하며, 연성과 함께 미적분학의 기초를 형성한다. 미분가능성은 물리학, 공학, 경제학 등 다양한 분야에서 함수의 행동을 예측하고 최적화 문...

시계열 예측

기술 > 데이터과학 > 예측 분석 | 익명 | 2025-09-26 | 조회수 30

# 시계열 예측 ## 개요 **시계열 예측**(Time Series Forecasting)은 시간에 따라 순차적으로 수집된 데이터를 기반으로 미래의 값을 예하는 데이터 과학의 핵심법 중 하나입니다. 이법은 경제표, 주가,상 데이터, 판매량 웹 트래픽 등 시간의 흐름에 따라 변화하는 다양한 현상에 적용되며, 기업의 전략 수립, 자원 배분, 리스크 관리 등...

무리식

수학 > 대수학 > 무리식 | 익명 | 2025-09-23 | 조회수 30

# 무리식 무리식(無理式, irrational expression)은 수학, 특히 대수학에서 다루는 중요한 개념 중 하나로, **근호(√)를 포함하면서 그 안의 식이 완전제곱이 아닌 경우**에 해당하는 대식을 말한다. 무리식 유리식과비되며, 일반적으로 실수 범위에서 정의되지만, 특정 조건에서 복소수로 확장되기도 한다. 이 문서에서는 무리식의 정의, 성질,...

특징 추출

기술 > 컴퓨터비전 > 특징 추출 | 익명 | 2025-09-23 | 조회수 33

# 특징 추출 ## 개요 **특징 추출**(Feature)은 컴퓨터비전(Computer) 분야에서 이미지나 영상 데이터로부터 의미 있는 정보를 추출하여, 후속 작업(예: 객체 인, 분류, 매칭 등)에 활용할 수 있도록 변환하는 핵심 과정입니다. 원시 이미지 데이터는 픽셀 단위의 밀집된 숫자 배열로 구성되어 있으며, 이를 그대로 분석하는 것은 계산 비용이...

디지털 제어

기술 > 제어공학 > 디지털 제어 | 익명 | 2025-09-21 | 조회수 36

# 디지털 제어 디지 제어(Digital)는 아날로그 신호를지털 신호 변환하여 제어스템을 구현하는 기술로, 현대 제어공학의 핵심 분야 중 하나이다. 전통적인 아날로그 제어 시스템이 연속 시간 신호를 기반으로 동작한다면, 디지털 제어 시스템은 **샘플링된 이산 시간 신호**를 사용하여 시스템의 동작을 제어한다. 이는 마이크로프로세서, 디지털 신호 처리기(D...

복소수.md

수학 > 복소해석학 > 복소수 해 | 익명 | 2025-09-20 | 조회수 33

# 복소수 복소수(複素數, Complex)는 실수부와 허부로 구성된 수 체계로 수학, 물리학, 공학 등 다양한 분야에서 핵심적인 역할을 한다.소수는 차원 평면상 점으로 시각화할 수, 복소해석학(Complex Analysis의 기초를성한다. 이 문서 복소수의 정, 대수적 성질, 기하적 표현 연산법, 그리고 응용 분야에 대해 체계적으로 설명한다. --- ...

실수

과학 > 수학 > 통계 | 익명 | 2025-09-19 | 조회수 44

# 실수 개요 실(實數, Real)는 수학 특히 해석학 통계학에서 가장초적이면서도 핵심적인 수 체계 중 하나이다 실수는 수선 위의 모든 점에 일대일응하는 수의합으로 정의되며,리수와 무리수를 모두 포함한다. 통학에서는 데이터의 측정값, 확률, 평균, 분산 등 대부분의 수치적가 실수로 표현되기 실수 체계의 이해는 통계적 분석의 기초가 된다. 실수는 자연...

기울기 점근선

과학 > 수학 > 미적분학 | 익명 | 2025-09-19 | 조회수 46

# 기울기 점선 ## 개 기울기 점근선(영어: slant asymptote 또는 oblique asymptote)은 유함수의 그래프가 무한대 방향으로 접근만 결코 만나 않는 직선 중, 수평선이 기울기를 가진 직선을 의미한다. 일반적으로, 유리함수의 분모보다 분자의 차수가 **정확히 1차수 더 클 때** 기울기 점근선이 존재한다. 이 점근선은 함수의 전반...

지수족 형태

기술 > 통계학 > 확률분포 | 익명 | 2025-09-19 | 조회수 26

# 지수족 형태 지수족(Exponential Family Form)는 통계학에서 중요한 확률분의 수학적 구로, 많은 일반적인 확률분포들이 이 형태로 표현될 수 있다. 지수족은 추정 이론, 베이즈 통계, 일반화선형모형(GLM), 정보 이론 등 다양한 통계적 분석에서 핵심적인 역할을 하며, 수학적 처리의 용이성과 이론적 아름다움을 동시에 갖춘 구조이다. 본 ...