# 오차 함수 ##요 오차 함수(Error Function)는 수학, 특히 **확론**, **통계학**, **리학**, 그리고공학**에서 매우 중요한할을 하는 특수 함수이다. 이 함수는 정규분포의 누적분함수와 밀접한 관련이 있으며, 미분방정식의 해나 확률 계산에서 자주 등장한다. 오차 함수는 주로 **가우시안 적분**(Gaussian integral)과...
검색 결과
"수학적 표현"에 대한 검색 결과 (총 71개)
# VC 이론 VC 이론(Vapnik-Chervonenkis Theory)은 통계적 학습 이론의 핵심 기반 중 하나로, 머신러닝 모델의 일반화 능력을 수학적으로 분석하는 데 중요한 역할을. 이 이론 블라드미르 바프니크(Vladimir Vapnik)와 알세이 체르보넨키스lexey Chervonenkis가 190년대 초반에 제안하였으며, 특히 **모델의 복잡...
# PID 제어기 ## 개요 PID 제어기(PID Controller, Proportional-Integral-Derivative Controller)는 제어공학에서 가장 널리 사용되는 피드백 제어기 일종으로, 시스템의 출력이 목표값(Setpoint)에 빠르고 정확하게 수렴하도록 제어 입력을 조정하는 장치입니다. PID 제어기는 비례(P), 적분(I),...
# 피제수 피제수(被除數)는 나눗셈 연산에서 나누어지는 수를 의미하는 수학 용어. 나눗셈은 두 수를 비교하거나 어떤 양을 일정한 크로 나누는 과정 나타내며, 이 과정에서 중요한 역할을 하는 세 가지 구성 요소가 있습니다: **피제수**, **제수**(除數), 그리고 **몫**(商). 이 문서에서는 피제수의 정의, 수학적 표현, 활용 예시, 그리고 관련 개...
# 행렬-벡터 연산 행렬-벡터산은 선형대수의 핵심 개념 중 하나로, 데이터과학 머신러닝, 컴퓨터 그래픽스, 물리학 등 다양한 분야에서 광범위하게 활용됩니다. 특히 고차원 데이터를 처리하고 변환하는 데 있어 행렬과 벡터의 연산은 계산 효율성과 수학적 표현의 간결성을 제공합니다. 본 문서에서는 행렬-벡터 연산의 정의, 기본 연산 종류 계산 방법, 활용 사례 ...
# d-q축 ## 개요 **d-q축**(직좌표계 또는 동기전좌표계은 제어공학, 전기기계 및 전력전자 시스템에서 널리 사용되는 좌표계의 한 형태입니다. 이 좌표계는 3상 교류량(예: 전압, 전류, 자속)을 시간적으로 변하지 않는 직교 성분으로 변환함으로써 시스템 해석과 제어를 간편하게 해줍니다. 특히 유도전동기, 영구자석 동기전동기(PMSM), 인버터 제...
# 스킵-그램 (-gram) ## 개요 스킵-그램(Skip-gram)은 자연어 처리(Natural Language Processing, NLP) 분야에서 널리 사용되는어 모델링 기법으로 **워드 임베딩**(Word Embedding) 생성하는 데 핵심적인 역할을 한다. 스킵-그램은 2013년 토마스 미코로프(Tomas Mikolov)와 구글 연구팀이 제...
# PDF ## 개요 **PDF**(Probability Density Function, 확률 밀도 함수)는 **확론**과 **통계학** 연속 확률 변수의 확률 분포를 설명하는 핵심 개념이다. 이 함수는 특정 값에서 확률 변수가 나타날 **상대적 가능도**를 나타내며, 확률 변수가 특정 구간에 속할 확률을 그 구간에서의 PDF의 적분을 통해 계산할 수 ...
# 통계적 평등 ## 개요 **통계적 평등**(Stat Parity)은 인공지(AI) 및 기계학습 모델의 **공정성**(Fairness)을 평가하는 데 사용되는 핵심 개념 중 하나로, 모델의 예측 결과가 특정 **보호 속성**(예: 성별, 인종, 연령 등)에 따라 균형 있게 분포되어야 한다는 원칙을 의미합니다. 이는 AI 시스템이 사회적 소수 집단이나 ...
# 헤시안 행렬 헤시안 행렬(Hessian Matrix)은 다변수 실수값 함수의 **이계도함수**(second-order partial derivatives)를 정사각형 행렬 형태로 배열한 것으로, 함수의 국소적 곡률 정보를 제공하는 중요한 수학적 도구입니다. 선형대수학과 최적화 이론, 머신러닝, 물리학 등 다양한 분야에서 널리 사용되며, 특히 함수의 극...
# NumPy NumPy( erical Python의 약자)는 파이썬에서 과학적 계산을 수행하기 위한 핵심 라이브러리로, 대규모치 데이터를 효율적으로 처리할 수 있는 다차 배열 객체(`nd`)와 이를 다루기 위한 다양한 수학 함수를 제공합니다. 특히 데이터과학, 머신러닝, 물리학, 공학 등 다양한 분야에서 기본 도구로 사용되며, Pandas, SciPy,...
# 출력 게이트 개요 **출력 게이트**(Output)는 장단기 기억 장치(Long Short-Term Memory, LSTM)와 같은 순환 신경망(Recurrent Neural Network, R)의 핵심 구성 요소 중 하나로, 네트워크의 출력값을 조절하는 역할을 한다. 출력 게이트는 내 메모리 상태(Cell State)에서 얼마나 많은 정보를 최종...
# 가속도 ## 개요 **가속도**(acceleration)는 물체의 속도가 시간에 따라 변화하는 정도를 나타내는 물리량이다. 속도는 크기와 방향을 가지는 벡터이므로, 가속도 역시터량이며, 속도의 크기 변화뿐 아니라 방향 변화도 포함한다. 유체역학을 비롯한 물리학 전반에서 가속도는 운동을 설명하는 핵심 개념 중 하나이며, 뉴턴의 운동 법칙과 밀접한 관련...
# 연쇄 법칙 ## 개요 **연쇄 법칙**( Rule)은 미적분학에서 합성함수의 도함수를 구하는 데 사용되는 핵심적인 법칙이다. 특히 기하학과 수학반에서 곡선, 곡면, 다변수 함수의 기울기와 변화율을 분석할 때 중요한 역할을 한다. 연쇄 법칙은 단순한 함수의 미분을 넘어서, 복잡한 함수 구조를 해석하고 계산하는 데 필수적인 도구로, 고등학교 수학부터 대...
비용 함수 개요 **비용 함수**(Cost Function) 생산活动中 투입되는 생산 요소노동, 자본, 원자재 등)의 가격과량 사이의 관계를 수학적으로한 함수이다. 경제학, 특히 미시경제학과 기 이론에서 기업의 생산 결정, 가격 책정, 이윤 극대화 전략 수립에 핵심적인 역할을 한다. 비용 함수는 기업이 일정한 산출량을 생산하기 위해 최소한으로 지출해야...
# 트라이그램 트라이그램(Tr)은 자연어 처리(Natural Language Processing, NLP) 분야에서 텍스트의 언어적조를 모델하는 데 사용되는 통적 언어 모델의 한 형태입니다. 특히 **N-그램(N-gram)** 모델의 일종으로, 연된 세 개의 단어(또는 토큰)로 구성된 단위를 기반으로 언어의 확률적턴을 분석하고 예측하는 데 활용됩니다. 트...
# 밀집성 ## 개요 자연어처리(Natural Language Processing, N) 분야에서밀집성**(Density)은 언어의 의미를 수치적으로 표현하는 방식인 **임베딩**(ding)의 중요한 특성 중 하나를 의미합니다. 특히, 밀집성은 단, 문장, 문서를 고차원 벡터 공간에 표현할 때 그 벡터의 구성 방식과 밀도를 설명하는 개념으로, **희소성...
# L2 노름## 개요 **L2 노름L2 norm) 벡터 공간에서 벡터의 크기 또는 길이를 측정하는 방법 중 하나로, 선형수학, 기계학습, 신호, 수치해 등 다양한 분야에서 널리 사용되는 중요한 개념이다. L2 노름은 유클리드 노름(Euclidean norm)이라고도 하며, 일반적인 직관적인 '' 개념과 일한다. 이 문서에서는2 노름의의, 수학 표현, 성...
# FORTRAN ##요 FORTRAN(FORmula TRANslation의 약자)은 과학 및 공학 계산을 위해 개발된 최초의 고급 프로그래밍 언어 중 하나로,1950년대 초 IBM에서 개발되었다.TRAN은 수치석, 물리 시레이션, 기 모델링, 유체 역학 등 계산 집약적인 분야에서 널리 사용되어 왔으며, 현재까지도 고성능 컴퓨팅(HPC) 분야에서 중요한...
# 카운트 인코딩 ## 개요 **카운트 인코딩**(Count Encoding)은 범주형 변수(Categorical Variable)를 수치형 변수로 변환하는 대표적인 인코딩 기법 중 하나입니다. 머신러닝 모델은 일반적으로 문자열 형태의 범주형 데이터를 직접 처리할 수 없기 때문에, 이러한 데이터를 수치화하는 전처리 과정이 필수적입니다. 카운트 인코딩은 ...