# 고차원 확장 ##요 고차 확장(High-dimensional Extension)은 기하학에서 3차원 공간을 넘어서 4차 이상의 차원으로 개념을 확장하는 수적 접근을 의미합니다. 이는 유클리드 기하학의 기본 원리를 고차원 공간에 적용하고, 점, 선, 면, 입체와 같은 기하적 객체를 $ n $차원으로 일반화하는 것을 포함합니다. 고차원 기하는 순수 수학...
검색 결과
"기하학"에 대한 검색 결과 (총 37개)
# 대입법 **대입법**(代入法, Substitution Method)은 방정식 또는 연립방정식을 풀기 위한 기본적이고 효과적인 대수적 기 중 하나입니다. 두 개 이상의 미수가 포함된 연립일차방정식을 해결할 때 자주 사용되며, 한 변수를 다른 변수로 표현하여 다른 방정식에 대입함으로써지수의 수를 줄이고 문제를 단순화하는 방식으로 작동합니다. 이 방법은 중...
# 집합 연산 집합 연산(Set Operations)은 수, 특히 집합론(Set)에서 두 개의 집합을 조합하거나 비교하여 새로운 집합을 생성하는 기본적인 방법을 의미합니다. 집합은 서로 다른 원소(element)의 모임으로 정의되며, 이소들 사이의계를 분석하고작하기 위해 다양한 연산이 사용됩니다. 집합 연산은 수학 전반뿐 아니라 컴퓨터 과학, 논리학, 통...
# L2 노름## 개요 **L2 노름L2 norm) 벡터 공간에서 벡터의 크기 또는 길이를 측정하는 방법 중 하나로, 선형수학, 기계학습, 신호, 수치해 등 다양한 분야에서 널리 사용되는 중요한 개념이다. L2 노름은 유클리드 노름(Euclidean norm)이라고도 하며, 일반적인 직관적인 '' 개념과 일한다. 이 문서에서는2 노름의의, 수학 표현, 성...
# 텐서 ## 개요 **텐서**(Tensor)는 수학 및 컴퓨터 과학, 특히 머신러닝과 딥러닝 분야 핵심적인 개념, 다차원 배열 일반화한 수적 구조입니다 텐서는 스칼, 벡터,렬의 개념을 확장하여 N차원 데이터를 표현할 수 있으며, 현대 인공지능(AI) 시스템의 연산 기반을 이루는 중요한 **데이터 구조**입니다. 텐서는 주로 딥러닝 프레임워크(예: Te...
# 제곱근 ## 개요 제곱근은 수학에서 중요한 개념으로, 어떤 수를 제곱하여 원래의 수를 얻을 수 있는 수를 의미합니다. 예를 들어, 2는 4의 제곱근이 되며, 3은 9의 제곱근입니다. 이 문서에서는 제곱근의 정의, 성질, 계산 방법, 응용 분야 등을 체계적으로 설명하며, 고등학교 수학 수준의 이해를 돕기 위해 구성되었습니다. ## 제곱근의 정의 ###...
Okay, I to create a professional Korean document about "정적분" (Definite Integral) under the category of Calculus in Mathematics. Let me start by understanding the structure and requirements given. Fir...
# 치역 ## 개요 **치역**(range)은 수학, 특히 함수와 기하학에서 중요한 개념으로, 함수가 **정의역**(domain)의 입력값에 대해 실제로 출력하는 값들의 집합을 의미합니다. 치역은 **공역**(codomain)과 구분되어야 하며, 공역은 함수가 가질 수 있는 모든 가능한 출력값의 집합이지만 치역은 실제로 함수에 의해 "달성되는" 값들만 포...
# 도함수 ## 개요 도함수(derivative)는 수학에서 함수의 변화율을 나타내는 개념으로, 미적분학의 핵심 주제 중 하나입니다. 특정 점에서의 순간적인 변화율이나 기울기를 계산하는 데 사용되며, 물리학, 공학, 경제학 등 다양한 분야에서 응용됩니다. 도함수를 통해 함수의 최대/최소값, 곡선의 기울기, 가속도 등을 분석할 수 있습니다. --- ##...
# 도함수 ## 개요 도함수(derivative)는 수학에서 함수의 변화율을 나타내는 개념으로, 미적분학의 핵심 주제 중 하나이다. 특정 점에서의 순간적인 변화율이나 곡선의 접선 기울기를 계산하는 데 사용된다. 도함수는 물리학, 공학, 경제학 등 다양한 분야에서 응용되어 중요한 역할을 한다. ## 정의와 수학적 표현 ### 극한을 통한 정의 도함수는 함...
# 피타고라스 정리 ## 개요 피타고라스 정리는 직각삼각형의 세 변 사이의 관계를 설명하는 기하학적 정리로, 수학 역사상 가장 유명한 공식 중 하나이다. 이는 "직각삼각형에서 빗변의 제곱은 다른 두 변의 제곱의 합과 같다"는 내용을 담고 있으며, 삼각법, 물리학, 공학 등 다양한 분야에 응용된다. 정리는 고대 그리스 수학자 피타고라스(Πυθαγόρας)에...
# 좌표기하 ## 개요 좌표기하는 수학의 기하학 분야에서 **직교좌표계**를 활용하여 도형을 대수적 방식으로 표현하고 분석하는 방법론이다. 이는 17세기에 르네 드카르트(René Descartes)가 고안한 해석기하(Analytic Geometry)의 핵심 개념으로, 기존의 순수 기하학과 대수학을 통합하여 수학적 문제를 해결하는 데 중요한 도구로 사용된다...
# 대수학 ## 개요 대수학(algebra)은 수학의 한 분야로, 수와 기호를 사용하여 수량 간의 관계를 추상화하고 일반화하는 학문이다. 이는 단순한 계산을 넘어 변수, 방정식, 함수 등 복잡한 구조를 탐구하며, 과학, 공학, 컴퓨터 과학 등 다양한 분야에서 필수적인 도구로 활용된다. 대수학은 고대부터 현대까지 수많은 수학자들의 연구를 통해 발전해왔으며,...
# 무리수 ## 개요 무리수(無理數, *irrational number*)는 유리수(有理數)가 아닌 실수를 의미합니다. 유리수는 두 정수의 비로 표현할 수 있는 수이지만, 무리수는 그렇지 못한 수입니다. 이들은 수학에서 중요한 역할을 하며, 기하학, 대수학, 해석학 등 다양한 분야에 적용됩니다. ## 정의 및 특성 무리수는 **유리수가 아...
# 미적분학 ## 개요 미적분학은 수학의 중요한 분야로, 변화율과 누적량을 연구하는 학문이다. 고등학교 수학에서 필수적인 내용으로, 함수의 극한, 도함수, 적분 등을 다루며 과학, 공학, 경제학 등 다양한 분야에 응용된다. 이 문서는 미적분학의 기초 개념부터 실제 적용까지 체계적으로 설명한다. --- ## 1. 미적분학의 역사와 개발 ### 1.1 고...
# 수학 ## 개요 수학은 양, 구조, 공간 및 변화와 같은 추상적 개념을 탐구하는 체계적인 학문이다. 고대부터 현대까지 인간의 사고와 과학 기술 발전에 깊이 관여하며, 자연과학, 공학, 경제학 등 다양한 분야에서 필수적인 도구로 활용된다. 수학은 **기초수학**과 **심화수학**으로 나뉘며, 본 문서에서는 기초수학의 핵심 개념과 역사적 배경을 중심으로 ...
# 벡터 데이터 ## 개요 벡터 데이터는 지리정보시스템(GIS)에서 공간적 정보를 표현하는 주요 방법 중 하나로, 지표면의 물리적 또는 개념적인 요소를 **점(Point)**, **선(Line)**, **면(Polygon)** 형태로 모델링하여 저장합니다. 이 데이터 형식은 정밀한 위치 정보와 관련 속성을 결합해 다양한 분야에서 활용되며, 도시 계획,...