# 곱셈 규칙 (Product Rule) ## 개요 곱셈 규칙은 미적분학에서 두 함수의 곱을 미분할 때 사용하는 기본적인 도함수 계산법이다. 이 규칙은 단순히 각 함수를 별도로 미분한 후 곱하는 것이 아니라, **첫 번째 함수의 도함수와 두 번째 함수의 곱**과 **첫 번째 함수와 두 번째 함수의 도함수의 곱**을 더해야 한다는 점에서 중요하다. 이 규칙...
검색 결과
"WAR"에 대한 검색 결과 (총 244개)
# 극한 ## 개요 극한(limit)은 수학에서 함수의 행동을 분석하는 데 핵심적인 개념으로, 특정 점에 가까운 입력값에 대한 출력값의 추세를 나타냅니다. 미적분학의 기초가 되며, 도함수와 적분의 정의에 필수적이며, 물리학, 공학 등 다양한 분야에서 응용됩니다. 극한은 수렴과 발산을 이해하는 데 중요한 역할을 하며, 함수의 연속성, 미분 가능성 등...
# 적분법 ## 개요 적분법(integral calculus)은 미적분학의 핵심 분야로, 함수의 **적분**을 연구하는 수학 이론이다. 주로 곡선 아래의 넓이, 부피, 누적량 등을 계산하는 데 사용되며, 물리학, 공학, 경제학 등 다양한 분야에서 응용된다. 적분은 미분과 반대되는 개념으로, **미분 방정식**을 해결하거나 함수의 원시함수를 찾는 데 필수적...
# 미분법 ## 개요 미분법은 수학에서 함수의 변화율을 분석하는 기초적인 도구로, 미적분학의 핵심 주제 중 하나이다. 이는 특정 점에서의 순간 변화량(도함수)을 계산하여 함수의 성질을 탐구하는 방법으로, 물리학, 공학, 경제학 등 다양한 분야에서 응용된다. 미분법은 17세기 뉴턴과 라이프니츠에 의해 독립적으로 개발되었으며, 현대 수학의 기초를 형성하는 중...
# 대수학 ## 개요 대수학(algebra)은 수학의 한 분야로, 수와 기호를 사용하여 수량 간의 관계를 추상화하고 일반화하는 학문이다. 이는 단순한 계산을 넘어 변수, 방정식, 함수 등 복잡한 구조를 탐구하며, 과학, 공학, 컴퓨터 과학 등 다양한 분야에서 필수적인 도구로 활용된다. 대수학은 고대부터 현대까지 수많은 수학자들의 연구를 통해 발전해왔으며,...
# 미적분학 ## 개요 미적분학은 수학의 중요한 분야로, 변화율과 누적량을 연구하는 학문이다. 고등학교 수학에서 필수적인 내용으로, 함수의 극한, 도함수, 적분 등을 다루며 과학, 공학, 경제학 등 다양한 분야에 응용된다. 이 문서는 미적분학의 기초 개념부터 실제 적용까지 체계적으로 설명한다. --- ## 1. 미적분학의 역사와 개발 ### 1.1 고...
# 미적분학 ## 개요 미적분학(calculus)은 수학의 중요한 분야로, 변화와 누적을 연구하는 학문이다. 17세기에 뉴턴(Isaac Newton)과 라이프니츠(Gottfried Wilhelm Leibniz)에 의해 체계화된 이 분야는 물리학, 공학, 경제학 등 다양한 과학 분야에서 필수적인 도구로 사용된다. 미적분학은 **미분**과 **적분** 두 가...
# 중력 붕괴 ## 개요 중력 붕괴는 우주 공간에서 물체의 질량이 극단적으로 집중되어 중력장이 강해지면서 발생하는 현상이다. 이는 주로 별의 진화 과정에서 나타나며, 별 내부의 열핵 반응이 멈추면 중력이 압력을 이기고 물질을 중심으로 수축하게 된다. 중력 붕괴는 블랙홀 형성, 중성자별 생성 등 극한의 천체 현상과 밀접한 관련이 있으며, 아인슈타인의 일반 ...
# 활성화 함수 ## 개요/소개 활성화 함수는 인공신경망(ANN)에서 입력 신호를 처리하여 출력을 생성하는 데 사용되는 핵심 요소입니다. 이 함수는 신경망이 비선형 관계를 학습할 수 있도록 하며, 단순한 선형 모델로는 해결 불가능한 복잡한 문제(예: 이미지 인식, 자연어 처리)를 해결하는 데 기여합니다. 활성화 함수의 선택은 네트워크 성능, 수렴 속도...
# 시그모이드 함수 ## 개요 시그모이드 함수(Sigmoid Function)는 **0에서 1 사이의 값을 출력**하는 비선형 활성화 함수로, 인공지능(AI) 및 머신러닝(ML) 분야에서 널리 사용됩니다. 이 함수는 로지스틱 회귀(Logistic Regression), 신경망(Neural Network) 등에서 **확률을 예측**하거나 **이진 분류(Bi...
# L1 정규화 ## 개요/소개 L1 정규화(L1 Regularization)는 머신러닝 모델의 과적합(overfitting)을 방지하기 위해 사용되는 중요한 기법 중 하나입니다. 이 방법은 모델의 파라미터(계수)에 절대값을 기반으로 페널티를 추가하여, 불필요한 특성(feature)을 제거하고 모델의 단순성을 유지합니다. L1 정규화는 특히 **스파시...
# 컨볼루션 신경망 ## 개요 컨볼루션 신경망(Convolutional Neural Network, CNN)은 이미지 처리 및 컴퓨터 비전 분야에서 널리 사용되는 인공신경망의 한 종류입니다. 주로 2차원 또는 3차원 데이터(예: 이미지, 영상)를 자동으로 특징을 추출하고 분류하는 데 효과적입니다. CNN은 계층 구조를 통해 입력 데이터에서 계층적인...
# 입력 게이트 ## 개요 입력 게이트는 인공지능 분야에서 특히 **장기 기억 유닛**(LSTM)과 같은 **순환 신경망**(RNN) 구조에서 핵심적인 역할을 하는 구성 요소이다. 이 게이트는 시퀀스 데이터 처리 중 새로운 정보가 어떻게 저장되는지를 제어하며, 장기 의존성을 관리하는 데 기여한다. 입력 게이트의 작동 원리는 신경망의 **세포 상태**(ce...
# 오픈소스 개발 ## 개요 오픈소스 개발은 소프트웨어의 원본 코드를 공개하고 자유롭게 수정·배포할 수 있도록 하는 협업 모델입니다. 이는 기술 발전과 공동체 참여를 촉진하며, 1980년대 이후로 전 세계적으로 확산되었습니다. 오픈소스는 "자유 소프트웨어"와 "오픈소스 소프트웨어" 두 가지 개념이 혼재된 역사적 배경을 가지고 있으며, 현재는 기업과 개인 ...
# 노이즈 ## 개요 노이스(Noise)는 데이터 과학에서 **불필요한 변동성** 또는 **측정 오차**를 의미하며, 분석의 정확도와 신뢰성을 저해하는 주요 요소로 작용합니다. 일반적으로 "신호(Signal)"에 포함된 유의미한 정보와 구별되는 **무작위적 요인**으로 간주되며, 데이터 수집 과정에서 발생하는 다양한 외부 영향이나 내부 오류로 인해 나타납...
# 실루엣 점수 ## 개요/소개 실루엣 점수(Silhouette Score)는 클러스터링 알고리즘의 성능을 평가하는 데 사용되는 지표로, 데이터 포인트가 자신의 클러스터에 얼마나 잘 속해 있는지를 측정합니다. 이 점수는 -1에서 1 사이의 값을 가지며, **1에 가까울수록 클러스터 간 분리도가 높고, -1에 가까우면 클러스터 내부의 유사도가 낮음을 의...
# 계층적 클러스터링 ## 개요/소개 계층적 클러스터링(Hierarchical Clustering)은 데이터 포인트 간의 유사도를 기반으로 계층 구조를 형성하는 비지도 학습 알고리즘입니다. 이 방법은 데이터의 자연적인 계층 구조를 탐지하고, 군집 간 관계를 시각화하는 데 효과적입니다. 주로 생물학, 마케팅 분석, 이미지 처리 등 다양한 분야에서 활용되며,...
# 파이썬 ## 개요 파이썬(Python)은 1990년대 초반에 Guido van Rossum에 의해 처음 설계된 고급 프로그래밍 언어로, **간결한 문법**, **다양한 응용 분야**, **활발한 커뮤니티**로 유명합니다. 이름은 영국 코미디 그룹 "몬티 파이선"에서 비롯되었으며, 프로그래머들이 코드를 쉽게 작성하고 읽을 수 있도록 설계되었습니다. 파이...
# Q-값 ## 개요 Q-값(Q-value)은 강화학습(Reinforcement Learning, RL)에서 중요한 개념으로, 특정 상태(state)에서 특정 행동(action)을 선택했을 때 기대할 수 있는 누적 보상(reward)을 나타냅니다. 이는 에이전트(agent)가 최적의 정책(policy)을 학습하는 데 필수적인 역할을 하며, Q-학습...
# 계층적 분류 (Hierarchical Clustering) ## 개요/소개 계층적 분류(Hierarchical Clustering)는 데이터 포인트 간의 유사도를 기반으로 계층 구조를 형성하여 클러스터를 생성하는 비단순 군집화 방법이다. 이 기법은 **계층적 구조**(Dendrogram)로 시각화되며, 데이터의 자연적인 계층 구조를 탐지하는 데 유용하...