임계점
# 임계점 ## 개요 임계점(臨界, 영어: critical point) 미분학에서 함수의 국소적 성질을 분석하는 데 핵심적인 개념이다. 함수의 그래프에서 극값(극대 또는 극소)이 존재할 수 있는 후보 지점으로, 함수의 변화율이 0이 되거나 미분이 존재하지 않는 점을...
# 임계점 ## 개요 임계점(臨界, 영어: critical point) 미분학에서 함수의 국소적 성질을 분석하는 데 핵심적인 개념이다. 함수의 그래프에서 극값(극대 또는 극소)이 존재할 수 있는 후보 지점으로, 함수의 변화율이 0이 되거나 미분이 존재하지 않는 점을...
# 치역 ## 개요 **치역**(range)은 함수 출력값, 즉에 의해 정의역의 원소들이 대응되는 값들의 집합을 의미한다. 수학, 특히 미적분학에서 치은 함수의 행동과 성질을 분석하는 데 핵심적인 개념 중 하나이다. 함수 $ f: A \to B $가 주어졌을 때, ...
# 완전제곱식 ## 개요 **완전제식**(完全平方式, Perfect Trinomial)은 대수학 자주 등장하는 특수 다항식의 일종으로, 어떤 이항식의 제곱으로 표현할 수 있는 삼항식을 의미한다. 즉, 두 항의 합 또는 차를 제곱한 결과로 나타나는 다항식이다. 완전제...
# 함수 ## 개요 **함수**(function)는 수학의 가장 기본 되는 개념 중로, 두 집합 사이의 특정한 관계를 의미한다. 간단히 말해 함수는 입력값(독립변수) 하나에 대해 정확히 하나의 출력값(종속변수) 대응시키는 규칙이다 함수는 수학 전반은 물론 물리, 공...
# 편미분방정식 ## 개요 편미방정식(Partial Differential Equation,DE)은 두 개 이상의립 변수를 갖는와 그 함수의 **편미분**(partial derivative)들 사이의 관계를 나타내는 수학적 방정식입니다. 일반 미분방정식(ODE)이 ...
# 피제수 피제수(被除數)는 나눗셈 연산에서 나누어지는 수를 의미하는 수학 용어. 나눗셈은 두 수를 비교하거나 어떤 양을 일정한 크로 나누는 과정 나타내며, 이 과정에서 중요한 역할을 하는 세 가지 구성 요소가 있습니다: **피제수**, **제수**(除數), 그리고 ...
# 변곡점 ## 개요 변곡점(變曲點, inflection point)은 함수 그래프가 **오목에서 볼록으로**, 또는 **볼록에서 오목으로** 변하는 지점을 의미한다. 즉, 함수의 **곡률**(curvature)이 부호를 바꾸는 점으로, 그래프의 형태가 변하는 전환...
범주론 ## 개요 범주론(Category Theory)은 수학의 분야로, 다양한 수학적 구조와 그 사이의 관계를 추상적으로 다루는 이이다. 1940년대에 샘UEL 에일렌버그(Samuel Eilenberg와 새먼 매클레인(Saunders Mac Lane)에 의해 위상...
# 여인자 전개 여인자 전개(Cofactor), 또는 라플라스 전개(Laplace Expansion)는 선형대수학 정사각행렬의 **행렬식**(determinant)을 계산하는 대표적인 방법 중 하나입니다. 이 방법은 행렬의 특정 행 또는 열의 원소들과 그에 대응하는 ...
행렬식 행렬식**(式, Determinant)은 선형대수학에서 정방행렬(square matrix)에 대응되는 하나의 스칼라 값으로, 행렬의 여러 중요한 성질을 판별하는 데 핵심적인 역할을 한다. 행렬식은 행렬이 가역(invertible)인지 여부, 선형 방정식의 해의...
# L∞ 노름 ## 개요 L∞ 노름-infinity norm), **최대 노름**(maximum norm), **균등 노름**(uniform norm), **서프리멈 노름**(supremum norm)은 벡터 공간 또는 함수 공간에서 벡터나 함수의 크기를 측정하는 ...
# 삼각 부등식 ## 개요 **삼각 부등식**(Triangleequality)은 선대수학에서 벡 공간의 노름orm)이 만해야 하는 핵심 성질 중 하나로, 두 벡터의 합의 크기가 각 벡터의 크기의 합보다 작거나 같다는 원리를 수학적으로 표현한 것이다. 이 부등식은 기...
# 동치관계 동치관계(同値關係, Equivalence Relation)는 수학, 특히 **일반 위상수학**과 **집합론**, **대수학** 등 다양한 분야에서 핵심적인 개념 중 하나이다. 이는 집합 원소들 사이에 어떤 기준에 따라 "서로 같다고 볼 수 있는" 관계를 ...
# 피카르-린델뢰프 정리 ## 개요 피카르-린델뢰프리**(Picard–Lindelöf Theorem)는 상미분방정식(Ordinary Differential Equation, ODE)의 해가 존재하고 유일함을 보장하는 중요한 정리로, 초기값 문제의 해에 대한 존재성과...
# 연속 함수 ## 개요 **연속 함수**(continuous function)는 위상수학에서 가장 기본적이면서도 핵심적인 개념 중 하나이다. 직관적으로, 연속 함수란 입력값이 조금만 변할 때 출력값도 조금만 변하는 함수를 의미한다.는 기하학적으로 "끊김 없이 이어...
토폴로지 ## 개요 **토폴로지**(topology)는 수학의 한 분야로, 기하학적 도형이나 공간의 **연속적인 변형** 아래에서 보존되는 성질을 연구하는 학문입니다. 즉, 늘이거나 구부리거나 비틀어도 형태가 바뀌지 않는 **위상적 성질**(topological p...
# 인수정리 인수정리는 대수학에서 다항식의 인수를 판별하고 다항식을 인수해하는 데 유용한 기본 정리 중 하나이다. 특히, 일차 인수의 존재 여부를 간단한 계산을 통해 확인할 수 있게 해주며, 다항식의 근과 인수 사이의 관계를 명확히 한다. 이 정리는 고등학교 수학에서...
# 초기값 문제 ## 개요 **초기값 문제**(Initial Value, IVP)는 미분방정식 이론에서 중요한 주제 중 하나로, 주어진 미분방정식과 특정한 초기 조건을 만족하는 해를 찾는 문제를 말한다. 일반적으로 시간에 따라 변화하는 동역학적 시스템의 행동을 모델...
# 경계값 문제 ## 개요 **경계값 문제**(Boundary Value Problem, BVP)는 미분방정식의 해를 구하는 과정에서, 특정 구간의 **경계**(boundary)에서 해가 만족해야 하는 조건을 제시하는 수적 문제이다. 이는 **초기값 문제**(Ini...
# 다변수 체인 규칙 다변수 체인 규칙(Multivariable Chain Rule)은 다변수 미적분학에서 중요한 도구 중 하나로, **여러 변수에 의존하는 함수의 합성 함수를 미분할 때 사용되는 법칙입니다. 이 규칙은 단일 변수 함수의 체인 규칙을 다변수 함수로 확...