# 함수 ## 개요 **함수**(function)는 수학의 가장 기본 되는 개념 중로, 두 집합 사이의 특정한 관계를 의미한다. 간단히 말해 함수는 입력값(독립변수) 하나에 대해 정확히 하나의 출력값(종속변수) 대응시키는 규칙이다 함수는 수학 전반은 물론 물리, 공학, 컴퓨터 과학, 경제학 등 다양한 분야에서 핵심적인 역할을 한다. 함수의 개념은 17...
검색 결과
"함수"에 대한 검색 결과 (총 341개)
# 연속 함수 ## 개요 **연속 함수**(continuous function)는 위상수학에서 가장 기본적이면서도 핵심적인 개념 중 하나이다. 직관적으로, 연속 함수란 입력값이 조금만 변할 때 출력값도 조금만 변하는 함수를 의미한다.는 기하학적으로 "끊김 없이 이어지는 그래프"를 그리는 함수와 유사하다. 그러나 위상수학에서는 거리 개념이 필요 없이, *...
# 시그모이드 함수 ## 개요 시모이드 함수(Sigmoid Function)는 S자 형태의 곡선을 가지는 수학적 함수로, 특히 인공지능, 통계학, 생물학, 그리고 수학 교육 등 다양한 분야 중요한 역할을. 이 함수는 입력값이 매우 작을 때 출력값이 0에 가까워지고, 입력값이 매우 클 때는 출력값이 1에 가까워지는 특성을 가지며, 중간 영역에서는 부드러운...
# 고계 도함수 ## 개요 고계 도함수(higher-order derivatives)는 함수의 도함수를 다시 미분하여 얻어지는 도함수를 말한다. 가장 기본적인 도함수인 **1계 도함수**(first derivative)는 함수의 순간 변화율을 나타내며, 이 도함수를 다시 미분하면 **2계 도함수**(second derivative), 또 이를 미분하면 ...
비용 함수 개요 **비용 함수**(Cost Function) 생산活动中 투입되는 생산 요소노동, 자본, 원자재 등)의 가격과량 사이의 관계를 수학적으로한 함수이다. 경제학, 특히 미시경제학과 기 이론에서 기업의 생산 결정, 가격 책정, 이윤 극대화 전략 수립에 핵심적인 역할을 한다. 비용 함수는 기업이 일정한 산출량을 생산하기 위해 최소한으로 지출해야...
# 복합함수 복합함수(複合函數, Composite Function)는 두 개 이상의 함수를 결합하여 만든 새로운 함수를 의미합니다. 수학, 특히 함수론에서 매우 개념으로, 함수의 출력값을 다른의 입력값으로 사용함으로써 함수 간의 관계를 표현하고 분석하는 데 핵심적인 역할을 합니다. 복합함수는 미적분학, 해석학, 선형대수학, 컴퓨터 과학 등 다양한 분야에서...
# 로그함수 로그함수(logarithmic function) 지수함수의 역함로 정의되는 수학적 함수로, 수학 전반과 과학, 공학, 경제학 등 다양한 분야에서 중요한 역할을 한다. 로그함수는 큰 수를 다루거나 지수적인 증가·감소를 분석할 때 유용하며, 특히 데이터의 스케일을 조정하거나 복잡한 곱셈을 덧셈으로 변환하는 데 자주 사용된다. 이 문서에서는 로그함...
# 함수 ## 개요 **함수**(function)는 수학에서 매우 핵심적인 개념 중 하나로, 두 집합 사이의 특정한 관계를 설명하는 도구이다. 간단히 말해, 함수는 **입력값**(독립변수) 하나에 대해 **정확히 하나의 출력값**(종속변수)을 대응시키는 규칙이다. 함수는 수학 전반은 물론 물리학, 공학, 컴퓨터 과학, 경제학 등 다양한 분야에서 모델링과...
# 함수 스코프 ## 개요 JavaScript에서 **스코프**(Scope) 변수와 함수가에서 접근 가능하고,에서 정의되는 결정하는 규칙을 의미합니다. 특히 **수 스코프Function Scope)는 JavaScript의 핵심적인 개념 중 하나로, 변수가 **함수 내부 선언될 때 그 함수 내 전체에서만 접근**하도록 제한하는 스코프의 한입니다. 이는 블...
# JavaScript 일급 함수 ## 개요 JavaScript에서 **일급 함수**(First-class Function)는 함수가 프로그래밍 언어의 기본 자료형으로 취급되는 특성을 의미합니다. 이는 함수를 변수에 할당하거나, 다른 함수의 인자로 전달하거나, 함수에서 반환할 수 있는 기능을 포함합니다. 이러한 특성 덕분에 JavaScript는 함수형 프...
```markdown # 화살표 함수 (Arrow Function) ## 개요 화살표 함수(Arrow Function)는 **ECMAScript 2015**(ES6)에 도입된 새로운 함수 표현 방식으로, 기존 함수 표현식의 단점을 보완하고 더 간결한 문법을 제공합니다. 특히 `this` 키워드의 렉시컬(lexical) 바인딩과 간결한 구조로 인해 콜백 함...
# 함수 ## 개요 함수(function)는 수학, 특히 미적분학에서 핵심적인 개념으로, 두 집합 사이의 입력값과 출력값의 관계를 정의하는 규칙입니다. 미적분학에서는 함수의 변화율(미분)과 누적합(적분)을 분석함으로써 과학, 공학, 경제학 등 다양한 분야의 문제를 해결할 수 있습니다. 이 문서에서는 함수의 기본 정의, 특성, 종류, 미적분학에서의 활용을 ...
# 목적 함수 ## 개요 목적 함수(objective function)는 데이터과학과 최적화 문제에서 핵심적인 역할을 하는 수학적 함수로, 모델의 성능을 평가하거나 최적의 해를 도출하기 위해 최소화 또는 최대화하는 대상입니다. 기계학습에서는 모델의 예측 오차를 줄이는 것을 목표로 하며, 수학적 최적화에서는 특정 조건 하에서 최적의 해를 찾는 데 사용됩니다...
# 해시 함수 ## 개요 해시 함수(Hash Function)는 임의 길이의 입력 데이터를 고정 길이의 출력 값으로 변환하는 수학적 함수입니다. 블록체인 기술에서 해시 함수는 데이터 무결성 보장, 트랜잭션 검증, 블록 연결 등 핵심적인 역할을 수행하며, 암호화 기술의 기반 요소로 작용합니다. 본 문서에서는 해시 함수의 정의, 특성, 블록체인에서의 활용 사...
# 복합함수 ## 개요 복합함수(composite function)는 수학에서 두 함수를 결합하여 새로운 함수를 생성하는 방법이다. 이 개념은 미적분학, 해석학, 공학 등 다양한 분야에서 핵심적인 역할을 하며, 특히 복잡한 수식의 도함수 계산에 필수적이다. 복합함수는 하나의 함수의 결과를 다른 함수에 입력으로 사용하는 방식으로 정의되며, 이는 함수의...
# 도함수 ## 개요 도함수(derivative)는 수학에서 함수의 변화율을 나타내는 개념으로, 미적분학의 핵심 주제 중 하나입니다. 특정 점에서의 순간적인 변화율이나 기울기를 계산하는 데 사용되며, 물리학, 공학, 경제학 등 다양한 분야에서 응용됩니다. 도함수를 통해 함수의 최대/최소값, 곡선의 기울기, 가속도 등을 분석할 수 있습니다. --- ##...
# 도함수 ## 개요 도함수(derivative)는 수학에서 함수의 변화율을 나타내는 개념으로, 미적분학의 핵심 주제 중 하나이다. 특정 점에서의 순간적인 변화율이나 곡선의 접선 기울기를 계산하는 데 사용된다. 도함수는 물리학, 공학, 경제학 등 다양한 분야에서 응용되어 중요한 역할을 한다. ## 정의와 수학적 표현 ### 극한을 통한 정의 도함수는 함...
# 함수 ## 개요 함수는 수학에서 중요한 개념으로, 하나의 입력 값에 대해 단일 출력 값을 매핑하는 규칙을 의미합니다. 이는 다양한 분야에서 모델링과 예측을 가능하게 하며, 대수학, 미적분학, 과학 등에서 핵심적인 역할을 합니다. 본 문서에서는 함수의 정의, 종류, 성질, 실생활 적용 등을 상세히 설명합니다. --- ## 정의 함수는 **도메인**(...
# 활성화 함수 ## 개요/소개 활성화 함수는 인공신경망(ANN)에서 입력 신호를 처리하여 출력을 생성하는 데 사용되는 핵심 요소입니다. 이 함수는 신경망이 비선형 관계를 학습할 수 있도록 하며, 단순한 선형 모델로는 해결 불가능한 복잡한 문제(예: 이미지 인식, 자연어 처리)를 해결하는 데 기여합니다. 활성화 함수의 선택은 네트워크 성능, 수렴 속도...
# 시그모이드 함수 ## 개요 시그모이드 함수(Sigmoid Function)는 **0에서 1 사이의 값을 출력**하는 비선형 활성화 함수로, 인공지능(AI) 및 머신러닝(ML) 분야에서 널리 사용됩니다. 이 함수는 로지스틱 회귀(Logistic Regression), 신경망(Neural Network) 등에서 **확률을 예측**하거나 **이진 분류(Bi...