검색 결과

"위치 함수"에 대한 검색 결과 (총 8개)

라그랑주 표기법

수학 > 수학 기호 > 라그랑주 표기법 | 익명 | 2025-09-19 | 조회수 2

# 라그랑주 표기 라그랑주 표법(Lagrange's notation)은분을 나타내는 수학 기 체계 중 하나로, 프랑스의 수학자 조제프루이 라그랑주(Joseph-Louis Lagrange의 이름을 따서 명명되었다. 표기법은의 도함수(derivative)를 표현하는 데 널리 사용되며, 특히 미적분학 교육 및 공학, 물리학 등 다양한 분야에서 흔히 등장한다. ...

주기 함수

수학 > 함수 > 삼각함수 | 익명 | 2025-09-18 | 조회수 5

# 주기 함수 개요 **기 함수**(Periodic)는 수학, 특히 함수론에서 매우 중요한 개념 중 하나로, 특정 간격(주기)을 두고 그 함수값이 반복되는 성질을 가진 함수 의미한다. 주기 함수는 자연현상의 반복성, 예를 들어 파동, 진동, 계절 변화 등과 밀접한 관련이 있으며, 삼각함수는 대표적인 주기 함수의 예이다. 이 문서에서는 주기 함수의 정의...

변곡점

수학 > 미적분학 > 미분학 | 익명 | 2025-09-13 | 조회수 6

# 변곡점 ## 개요 변곡점(變曲點, inflection point)은 함수 그래프가 **오목에서 볼록으로**, 또는 **볼록에서 오목으로** 변하는 지점을 의미한다. 즉, 함수의 **곡률**(curvature)이 부호를 바꾸는 점으로, 그래프의 형태가 변하는 전환점이라 할 수 있다. 변곡점은 미분학에서 함수의 그래프를 분석하고 해석하는 데 중요한 역할...

미적분학

교육 > 수학 > 미적분학 | 익명 | 2025-09-05 | 조회수 8

# 미적분학 ## 개요 미적학(微積分學, Calculus)은 수학의 한 분야로, **변화율**(미분)과 **누적량**(적분)을 다루는 학문이다. 현대 과학과 공학, 경제학, 물리학 등 다양한 분야에서 핵심 도구로 사용되며, 함수의 기울기, 면적, 부피, 속도, 가속도 등을 분석하는 데 필수적인 역할을 한다. 미적분학은 17세기에 아이작 뉴턴(Isaac ...

체인 규칙

기술 > 수학 > 미적분학 | 익명 | 2025-07-30 | 조회수 16

# 체인 규칙 ## 개요 체인 규칙(Chain Rule)은 미적분학에서 합성 함수의 도함수를 구하는 핵심적인 방법론입니다. 이 규칙은 외부 함수와 내부 함수의 변화율을 곱하여 전체 함수의 변화율을 계산하는 방식으로, 과학 및 공학 분야에서 복잡한 함수의 미분을 단순화하는 데 널리 사용됩니다. 예를 들어, $ f(g(x)) $ 형태의 함수에서 $ x $에 ...

미분법

교육 > 수학 > 미적분학 | 익명 | 2025-07-16 | 조회수 35

# 미분법 ## 개요 미분법은 수학에서 함수의 변화율을 분석하는 기초적인 도구로, 미적분학의 핵심 주제 중 하나이다. 이는 특정 점에서의 순간 변화량(도함수)을 계산하여 함수의 성질을 탐구하는 방법으로, 물리학, 공학, 경제학 등 다양한 분야에서 응용된다. 미분법은 17세기 뉴턴과 라이프니츠에 의해 독립적으로 개발되었으며, 현대 수학의 기초를 형성하는 중...

도함수

교육 > 수학 > 미적분학 | 익명 | 2025-07-16 | 조회수 32

# 도함수 ## 개요 도함수(derivative)는 수학에서 함수의 변화율을 나타내는 개념으로, 미적분학의 핵심 주제 중 하나입니다. 특정 점에서의 순간적인 변화율이나 기울기를 계산하는 데 사용되며, 물리학, 공학, 경제학 등 다양한 분야에서 응용됩니다. 도함수를 통해 함수의 최대/최소값, 곡선의 기울기, 가속도 등을 분석할 수 있습니다. --- ##...

도함수

기술 > 수학 > 미적분학 | 익명 | 2025-07-16 | 조회수 21

# 도함수 ## 개요 도함수(derivative)는 수학에서 함수의 변화율을 나타내는 개념으로, 미적분학의 핵심 주제 중 하나이다. 특정 점에서의 순간적인 변화율이나 곡선의 접선 기울기를 계산하는 데 사용된다. 도함수는 물리학, 공학, 경제학 등 다양한 분야에서 응용되어 중요한 역할을 한다. ## 정의와 수학적 표현 ### 극한을 통한 정의 도함수는 함...