# 체인 규칙 ## 개요 **체인 규칙**(Chain Rule)은 미적분학에서합성함수**(composite function)의 도함수를 구하는 데 사용되는 핵심적인 미분 법칙이다. 두 개 이상의 함수가 합성된 형태, 즉 $ y = f(g(x)) $ 와 같은 함수의 변화율을 계산할 때 매우 유용하며, 고등 수학 및 응용 과학 전반에서 빈번히 사용된다. 체...
검색 결과
"수학"에 대한 검색 결과 (총 269개)
# 수직 점근선 ## 개요 수직 점근선(vertical asymptote)은 함수의프가 특정 수직에 무한히까워지면서 그을 지나지 않는 현상을 말. 수직 점선은 함수가 정의되지 않거나 무한대로 발산하는 점에서 발생하며, 주로 유리함수, 로그함수, 삼각함수 등의 함수에서 관찰된다. 수직 점근선은 함수의 극한 성질을 이해하고, 그래프의 형태를 분석하는 데 중...
# 미적분학 ## 개요 미적학(微積分學, Calculus)은 수학의 한 분야로, **변화율**(미분)과 **누적량**(적분)을 다루는 학문이다. 현대 과학과 공학, 경제학, 물리학 등 다양한 분야에서 핵심 도구로 사용되며, 함수의 기울기, 면적, 부피, 속도, 가속도 등을 분석하는 데 필수적인 역할을 한다. 미적분학은 17세기에 아이작 뉴턴(Isaac ...
# 중간 변수 ## 개요 미적분학에서 **중간 변수**(intermediate variable)는 복합 함수(composite function)의 구조를 이해하고 미분을 수행할 때 자주 등장하는 개념이다. 중간 변수는 독립 변수와 종속 변수 사이에 위치하여, 함수의 입력값이 최종 출력값에 영향을 미치는 과정에서 일종의 '매개체' 역할을 한다. 특히, *...
비용 함수 개요 **비용 함수**(Cost Function) 생산活动中 투입되는 생산 요소노동, 자본, 원자재 등)의 가격과량 사이의 관계를 수학적으로한 함수이다. 경제학, 특히 미시경제학과 기 이론에서 기업의 생산 결정, 가격 책정, 이윤 극대화 전략 수립에 핵심적인 역할을 한다. 비용 함수는 기업이 일정한 산출량을 생산하기 위해 최소한으로 지출해야...
# 수평 점근선 수평 점근선(水平漸近線, Horizontal Asymptote)은 함수의 그래프가 독립변수(보통 $ x $)가 양의 무한대($ +\infty) 또는 음의 무한대($ -\infty $)로 갈 때, 특정한 수평선에 점점 가까워지는 경향을 보일 때 존재하는 직선이다. 이 개념은 미적분학, 특히 함수의 극한과 그래프 해석에서 중요한 역할을 하며,...
# 고차원 확장 ##요 고차 확장(High-dimensional Extension)은 기하학에서 3차원 공간을 넘어서 4차 이상의 차원으로 개념을 확장하는 수적 접근을 의미합니다. 이는 유클리드 기하학의 기본 원리를 고차원 공간에 적용하고, 점, 선, 면, 입체와 같은 기하적 객체를 $ n $차원으로 일반화하는 것을 포함합니다. 고차원 기하는 순수 수학...
# 편미분방정식 ## 개요 편미분방정식(偏微分方程式, Partial Differential Equation, 이하 PDE)은 개 이상의 독립 변수를 가지는 함수와 그 함수의 **편미분**(partial derivative)들 사이의 관계를 나타내는 방정식이다. 이는 물리학, 공학, 경제학, 생물학 등 다양한 분야에서 자연 현상을 수학적으로 모델링하는 데...
# 나눗셈 규칙 나눗셈 규칙(Division Rule)은 미적분학에서 두 함수의 **비**(ratio)로 표현된 함수를 미분할 때 사용하는 중요한 미분 법칙 중 하나입니다. 이 규칙은 곱셈 규칙(Product Rule)과 함께 초월함수, 유리함수 등의 도함수를 구하는 데 핵심적인 역할을 하며, 고등학교 수학에서 대학 수준의 해석학까지 널리 활용됩니다. ...
# 복합함수 복합함수(複合函數, Composite Function)는 두 개 이상의 함수를 결합하여 만든 새로운 함수를 의미합니다. 수학, 특히 함수론에서 매우 개념으로, 함수의 출력값을 다른의 입력값으로 사용함으로써 함수 간의 관계를 표현하고 분석하는 데 핵심적인 역할을 합니다. 복합함수는 미적분학, 해석학, 선형대수학, 컴퓨터 과학 등 다양한 분야에서...
# 대입법 **대입법**(代入法, Substitution Method)은 방정식 또는 연립방정식을 풀기 위한 기본적이고 효과적인 대수적 기 중 하나입니다. 두 개 이상의 미수가 포함된 연립일차방정식을 해결할 때 자주 사용되며, 한 변수를 다른 변수로 표현하여 다른 방정식에 대입함으로써지수의 수를 줄이고 문제를 단순화하는 방식으로 작동합니다. 이 방법은 중...
# 로그함수 로그함수(logarithmic function) 지수함수의 역함로 정의되는 수학적 함수로, 수학 전반과 과학, 공학, 경제학 등 다양한 분야에서 중요한 역할을 한다. 로그함수는 큰 수를 다루거나 지수적인 증가·감소를 분석할 때 유용하며, 특히 데이터의 스케일을 조정하거나 복잡한 곱셈을 덧셈으로 변환하는 데 자주 사용된다. 이 문서에서는 로그함...
# 미분방정식 미분방정식(Differential Equation은 하나 이상의 변수에 대한 함수와 그 함수의 도함수(미분)가 포함된 방정식을 의미합니다. 이 자연과학, 공학, 경제학, 생물학 등 분야에서 시스템의 동적 변화를 모델링하는 데 핵심적인 도구로 사용됩니다. 미분방정식을 통해 물체의 운동, 열의 전도, 전기 회로의 거동, 인구 성장, 감염병 확산...
# 불연속점 ## 개요 함수의 **불연속점**(discontinuity point)은 함수가 특정 점에서 연속이 아닌 경우를 의미합니다. 미분학에서 함수의속성은 극한, 미분, 적분 등 다양한 개념의 기초가 되며, 불속점은 이러한 성질이 깨지는 지점을 분석하는 데 중요한 역할을 합니다. 불연속점은 함수의 그래프에서 '끊어짐', '점프', '무한대 발산' ...
# 트라이그램 트라이그램(Tr)은 자연어 처리(Natural Language Processing, NLP) 분야에서 텍스트의 언어적조를 모델하는 데 사용되는 통적 언어 모델의 한 형태입니다. 특히 **N-그램(N-gram)** 모델의 일종으로, 연된 세 개의 단어(또는 토큰)로 구성된 단위를 기반으로 언어의 확률적턴을 분석하고 예측하는 데 활용됩니다. 트...
# 사칙연산 ## 개요 **사칙연산**(四演算)은 수학의 기본이 되는 네 가지 연산인 **덧셈**(加法), **뺄셈**(減法), **셈**(乘法), **나눗셈**(除法) 총칭하는 용어입니다. 이 네 가지 연은 수를 다루는 모든 수학적 활동의 기초가 되며, 초등 수학부터 고등 수학, 그리고 실생활의 계산 문제까지 널리 사용됩니다. 사칙연산은 자연수, 정수...
# 해석적 표현함수는 수학에서 두 집합 사이의 관계 정의하는 핵 개념으로, 다양한 방식으로 표현할 수 있다 그중 **해석적 표현**(Analytic Representation)은 함수를 수식 또는 수학적 공식을 통해 명확히 기술하는 방법을 의미한다. 이 표현식은 함수의의역과 공역 사이의 정량적 관계를 정밀하게 설명할 수 있어 수학, 물리학, 공학 등 정량적...
# 연속형 ## 개요 **연속형**(Continuous type은 데이터과학에서의 측정 방식과 값의 성격에 따라 분류하는 데이터 유형 중 하나로, 특정 구간 내에서 무한히 많은 값을 가질 수 있는 수치 데이터를 의미합니다. 연속형 데이터는 이산형 데이터와 대조되며, 주로 물리적 측정값(예: 길이, 무게, 온도, 시간 등)에서 나타납니다. 이 데이터 유형...
# Levenshtein 거리 Levenshtein 거리(LD, 레벤슈타인 거리)는 두 문자열 간의 유사도를정하는 데 사용 **편집 거리Edit Distance)의 형태로, 하나 문자열을 다른 문자로 변환하는 필요한 최소 편집 연산수를 나타냅니다. 이 개념 1965년 러시아 수학자블라디미르 레슈타인**(ladimir Levenshtein)에 의해 제안되었...
# 밀집성 ## 개요 자연어처리(Natural Language Processing, N) 분야에서밀집성**(Density)은 언어의 의미를 수치적으로 표현하는 방식인 **임베딩**(ding)의 중요한 특성 중 하나를 의미합니다. 특히, 밀집성은 단, 문장, 문서를 고차원 벡터 공간에 표현할 때 그 벡터의 구성 방식과 밀도를 설명하는 개념으로, **희소성...