# 회전 **회전**(rotation)은 기하학 도형이나 점을 평면 공간 내의 한 점(또는 축)을 중심으로 일정한 각도만큼 돌리는 **합동 변환**(congrence transformation)의 일종이다. 회전을 통해어진 도형 원래 도형과 크기와 모양이 동일하며, 이는 도형의 **합동성**(congruence)을 유지한다는 의미이다. 회전은 일상생활뿐 ...
검색 결과
"수학"에 대한 검색 결과 (총 428개)
# 변환 기하 변환 기하(Transformational Geometry) 기하학적형이나 공간의 점들이 특정 규칙에 따라동하거나 변형되는 과정을 연구하는 기하학의 한 분야입니다. 이 분야는 도형의 위치, 방향, 크기 수학적으로 분석하고 표현하는 데 중점을 두며, 평면 기하학과 공간 기하학 모두에 적용됩니다. 변환 기하는 수학 교육뿐 아니라 컴퓨터 그래픽스,...
# 평균 절대 오 ## 개요 **평균 절대 오차**(Mean Absolute Error, MAE)는 회귀 분석에서 예 모델의 성능을 평가하는 대표적인 지표 중입니다. MAE는 예측값과 실제 관값 사이의 차이, 즉 **오차**(error)의 절대값을 평균한 값으로, 모델이 평균적으로 얼마나 큰 오차를 내는지를 직관적으로 나타냅니다. 회귀 분석에서는 모...
# MSE ## 개요 **MSE**(Mean Squared Error, 평균 제곱 오차)는 회귀 분석에서 예측 모델의 정확도를 평가하는 데 널리 사용되는 지표입니다. 이 값은 예측값과 실제 관측값 사이의 차이(오차)를 제곱한 후, 그 평균을 계산함으로써 모델의 전반적인 오차 크기를 수치화합니다. MSE는 회귀 모델의 성능을 비교하거나 하이퍼파라미터 최적...
# ACF ## 개요 ACF(Autorrelation Function, 자기관함수)는 시계열 분석에서 중요한 개념 중 하나로, **한 시계열 데이터 내에서 서로 다른 시점의 관측값 사이의 상관관계 측정하는 함수**입니다 시계열 데이터는 시간에 따라 순차적으로 수집된 데이터이므로, 현재과 과거의 사이에 일정한 관계가 존재할 수 있으며, 이러한 관계를 수치...
# 회귀 회귀(Regression)는 머신러닝 통계학에서 기법 중 하나로 하나 이상의 독립 변수(입력 변수)와 종속 변수(출력 변수) 사이의 관계를 모델링하여 연속 값을 예측하는 데 사용됩니다. 회귀 분석은 데이터의 패턴을 이해하고, 미래의 값을 추정하거나 간의 인과 관계를 탐색하는 데 널리 활용됩니다. 이 문서에서는 회귀 분석의 기본 개념, 주요 유형,...
# 과학기술 계산 과학기술 계산(Scientific)은 과학 및 공학 분야의 복잡한 문제를 수치적 방법과 컴퓨터 시뮬레이션을 통해 해결하는 학제 간 기술 영역입니다. 이 분야는 수학, 물리학, 컴퓨터 과학, 공학 등 다양한 분야의 지식을 융합하여 실험적 또는 이론적 접근만으로는 해결하기 어려운 문제를 분석하고 예측하는 데 핵심적인 역할을 합니다. 현대 과...
# 회로 이론 ## 개요 **회로 이**(Circuit Theory)은 전적 현상을 이해하고 전기 회의 동작을석하기 위한 기초적인 이론 체계이다. 전자공학, 전기공학, 통신공학 등 다양한 공학 분야의 근간을 이루며, 실제 전자기기 설계에서부터 전력 시스템 운영에 이르기까지 폭넓게 적용된다. 회로 이론은 전류, 전압, 저항, 인덕턴스, 정전용량 등과 같은...
# 전자기 상수 전자기 상수(電磁氣 常數, electromagnetic constants)는 전자기학의 기본 법칙을 기술하는 데 사용되는 물리 상수들로, 전기와 자기 현상의 상호작용을 수학적으로 표현하는 데 핵심적인 역할을 한다. 이러한 상수들은 맥스웰 방정식, 전자기파의 전파 속도, 물질 내에서의 전자기적 거동 등을 정량적으로 분석하는 데 필수적이며, ...
# 뉴턴의 만유인력 법칙 ## 개요 **뉴턴의 만유인력칙**(Newton's of Universal Gravitation은 모든 질량 가진 물체에 항상 인력이용한다는 것을 설명하는 고전역학의 핵심 법칙 중 하나이다. 이 법칙은17세기 영의 물리학 아이작 뉴턴(Is Newton)이 687년판한 저서 『자연철학의 수학적 원리』(*Philosophiæ Nat...
미분가능미분가능(differentiable)은 미분학에서 매우 개념으로, 함수의 특정 지에서 접선이 존재하고 그 지점에서의 기울기를 잘 정의할 수 있는 성질을 의미한다. 이는 함수의 국소적인율을 분석하는 데 핵심적인 역할 하며, 연성과 함께 미적분학의 기초를 형성한다. 미분가능성은 물리학, 공학, 경제학 등 다양한 분야에서 함수의 행동을 예측하고 최적화 문...
# 중력 상수 ## 개요 **중력 상수**(avitational Constant), 종종뉴턴의 중 상수**(Newtonian constant of gravitation) 또는 기호로 **G**로 표기되는 이 값 물리학에서 만유인력의 세기를 결정하는 기본 물리 상수이다. 중력 상수는 아이작 뉴턴이 1687년에 발표한 만유인력의 법칙에서 처음 도입되었으며,...
# 덧셈 법칙 ## 개요 확률론에서 **덧 법칙**(Addition Rule)은 두 사건 중 적어도 하나가 발생할 확률을 계산하는 데 사용되는 기본 원리이다. 이 법칙은 사건 간의 관계, 특히 사건들이 **서로 배타적인지**(mutually exclusive) 여부에 따라 두 가지 형태로 나뉜다. 덧셈 법칙은 확률의 공리적 정의에 기반하며, 복합 사건의...
# 중력 상수 중력 상수(G)는 물리학에서 뉴턴의 만유인력 법에 등장하는 기본 상수로, 두 물체 사이의 중력적 상호작용의 세기를 결정하는 데 핵심적인 역할을 한다. 이 상수는 우주의 기본 상수 중 하나로 간주되며, 고전 역학에서부터 천체 물리학, 우주론에 이르기까지 다양한 분야에서 활용된다. 본 문서에서는 중력 상수의 정의, 역사, 측정 방법, 물리적 의...
# 확률 ## 개요 **확률**(Probability)은 어떤 사건이 발생할 가능성을치적으로 표현한 개념으로, 통계학과 수학, 특히 확률론의 핵심 기초를 이룹니다. 현실 세계에서 불확실한 상황을 분석하고 예측하는 데 널리 활용되며, 과학, 공학, 경제, 의학, 인공지능 등 다양한 분야에서 중요한 도구로 사용됩니다. 확률은 일반적으로 0과 1 사이의 실...
# 퍼플렉서티 ## 개요 **퍼플렉서티**(plexity)는 자연어(Natural Language Processing NLP) 분야 언어 모델(Language Model)의 성능을 평가하는 대표적인 지표 중 하나입니다 직관적으로, 퍼플렉서티 모델이 주어진 텍스트 시퀀스를 예측하는 데 얼마나 '당황'하는지를 나타내는 수치로 해석할 수 있습니다. 즉, 퍼플...
Agda Agda는 함수형 프로그래밍 언어이자 **정형 증명기**(proof assistant)로, 수학적 정리의 형식적 증명과 소프트웨어의 정확성 검증을 위해 설계된 고급 언어입니다. Agda는 **의존 타입**(dependent types)을 지원하여, 프로그램의 구조와 논리적 성질을 타입 시스템에 직접 반영할 수 있어, 프로그램이 요구된 사양을 만족...
# 타입 이론타입 이론 Theory)은 프로그래밍 언어 수학 기초 이론에서 중요한 역할을 하는 학문 분야로, 데이터의 종류(타입를 체계적으로 정의하고, 이들 간의 관계와 연산의 유효성을 검증하는 이론적 기반을 제공합니다. 특히 프로그래밍 언 설계, 형식적 검증 컴파일러 개발, 함수형 프로그래밍 등에서 핵심적인 역할을 하며, 오류를 사전에 방지하고 코드의 안...
# 무리식 무리식(無理式, irrational expression)은 수학, 특히 대수학에서 다루는 중요한 개념 중 하나로, **근호(√)를 포함하면서 그 안의 식이 완전제곱이 아닌 경우**에 해당하는 대식을 말한다. 무리식 유리식과비되며, 일반적으로 실수 범위에서 정의되지만, 특정 조건에서 복소수로 확장되기도 한다. 이 문서에서는 무리식의 정의, 성질,...
# 특징 추출 ## 개요 **특징 추출**(Feature)은 컴퓨터비전(Computer) 분야에서 이미지나 영상 데이터로부터 의미 있는 정보를 추출하여, 후속 작업(예: 객체 인, 분류, 매칭 등)에 활용할 수 있도록 변환하는 핵심 과정입니다. 원시 이미지 데이터는 픽셀 단위의 밀집된 숫자 배열로 구성되어 있으며, 이를 그대로 분석하는 것은 계산 비용이...