# 확률 분포## 개요 **확률 분포**(Probability Distribution는 확률변의 가능한 값들과 각 값이 발생할 확률을 체계적으로 설명하는 수학적 함수이다. 통계학과 확률론의 핵심 개념 중 하나, 데이터의 특과 불확실성을량적으로 분석 예측하는 데 필수적인 도구이다. 확률 분포는 실험, 관측, 또는 이론적 모델에서 얻은 결과의 확률적 행동을 ...
검색 결과
"DEM"에 대한 검색 결과 (총 75개)
# 체질량지수 ## 개요 체질량지수(Body Mass Index, BMI)는 개인의 체중과 키를 활용해 체중 상태를 평가하는 간단한 지표입니다. 이는 비만, 과체중, 저체중 등 건강 상태를 대략적으로 파악하는 데 사용되며, 임상 및 공중보건 분야에서 널리 활용됩니다. 1832년 벨기에 통계학자 아돌페 퀘이텔레(Adolphe Quetelet)가 개발한 이 ...
# REST API ## 개요 REST API(Representational State Transfer Application Programming Interface)는 웹 서비스 개발에서 널리 사용되는 아키텍처 스타일로, 클라이언트-서버 간의 데이터 통신을 단순화하고 확장성을 높이기 위해 설계되었습니다. Roy Fielding이 2000년에 발표한 박사 ...
Okay, I to create a professional Korean wiki-style document aboutose, categorized under Health,, Carbohydrates. The user wants a markdown format specific structure and quality. Let's start by understa...
# 전기차 공학 ## 개요 전기차 공학(Electric Vehicle Engineering)은 내연기관 대신 전기 에너지를 동력원으로 사용하는 차량의 설계, 개발, 제조, 운영에 관련된 학제간 기술 분야입니다. 기후 변화 대응과 지속 가능한 교통 수단 확보를 위한 전기차(EV) 수요 증가에 따라 배터리 기술, 전력 전자, 구동 시스템, 충전 인프라 등 다...
Okay, I to write a professional Wikipedia document about Lasso Regression based on the given structure and requirements. Let's start by understanding the classification and keywords. The main category...
# 분수분해 ## 개요 분수분해(Partial Fraction Decomposition)는 복잡한 유리 함수를 더 단순한 유리 함수의 합으로 분해하는 대수적 기법입니다. 주로 적분 계산, 미분 방정식 풀이, 역라플라스 변환 등에서 활용되며, 유리 함수의 분모를 일차 또는 이차 인수로 분해한 뒤 분자를 적절히 조합하여 표현합니다. ## 분수분해의 정의와 ...
# 서버 구성 관리 ## 개요 서버 구성 관리는 IT 인프라에서 서버의 설정과 상태를 일관되고 효율적으로 유지하는 프로세스를 의미합니다. 대규모 시스템에서 수동으로 서버를 관리하는 것은 시간 소모적이며 오류 발생 가능성이 높기 때문에, 자동화 도구와 시스템적인 접근법이 필수적입니다. 이 문서에서는 서버 구성 관리의 개념, 주요 도구, 프로세스, 베스트 프...
# 데이터 편향 ## 개요 데이터 편향(Data Bias)은 머신러닝 모델 훈련에 사용되는 데이터셋에 시스템적으로 왜곡된 패턴이 존재하는 현상으로, 모델의 예측 결과에 불공정성이나 오류를 유발할 수 있습니다. 이러한 편향은 데이터 수집, 전처리, 모델링 전 단계에서 발생할 수 있으며, 사회적 불평등을 심화시키거나 법적 문제를 야기할 수 있습니다. 예를 들...
# 체인 규칙 ## 개요 체인 규칙(Chain Rule)은 미적분학에서 합성 함수의 도함수를 구하는 핵심적인 방법론입니다. 이 규칙은 외부 함수와 내부 함수의 변화율을 곱하여 전체 함수의 변화율을 계산하는 방식으로, 과학 및 공학 분야에서 복잡한 함수의 미분을 단순화하는 데 널리 사용됩니다. 예를 들어, $ f(g(x)) $ 형태의 함수에서 $ x $에 ...
# 치역 ## 개요 **치역**(range)은 수학, 특히 함수와 기하학에서 중요한 개념으로, 함수가 **정의역**(domain)의 입력값에 대해 실제로 출력하는 값들의 집합을 의미합니다. 치역은 **공역**(codomain)과 구분되어야 하며, 공역은 함수가 가질 수 있는 모든 가능한 출력값의 집합이지만 치역은 실제로 함수에 의해 "달성되는" 값들만 포...
# 점근선 ## 개요 점근선(Asymptote)은 수학, 특히 미적분학에서 함수의 그래프가 무한대로 발산할 때 가까워지는 직선을 의미합니다. 이는 함수의 전반적인 행동을 이해하고 그래프를 정확하게 그리는 데 중요한 역할을 합니다. 점근선은 크게 **수직 점근선**, **수평 점근선**, **기울기 점근선**으로 구분되며, 각각의 조건과 활용 방법은 서로 ...
# 부분적분 ## 개요 부분적분(部分積分, Integration by Parts)은 미적분학에서 곱의 미분법을 기반으로 한 적분 기술로, 복잡한 함수의 곱을 포함하는 적분을 단순화하여 계산하는 데 사용됩니다. 이 방법은 특히 다항식과 삼각함수, 지수함수, 로그함수의 곱 형태로 주어진 적분 문제에 효과적입니다. 본 문서에서는 부분적분의 공식 유도, 적용 방...
# 수직점근선 ## 개요 수직점근선(Vertical Asymptote)은 함수의 그래프가 특정 수직선 $ x = a $ 근처에서 무한대로 발산하는 현상입니다. 이는 함수가 정의되지 않은 점에서 발생하며, 미적분학에서 함수의 극한과 연속성, 불연속점 분석에 중요한 개념입니다. 수직점근선은 유리함수, 삼각함수 등 다양한 수학적 모델에서 관찰되며, 물리학과 공...
# p-값 ## 개요 **p-값**(p-value)은 통계적 가설 검정에서 귀무 가설(null hypothesis)이 참일 경우, 관측된 데이터 또는 그보다 더 극단적인 결과가 발생할 확률을 나타냅니다. 이 값은 연구자가 귀무 가설을 기각할지 여부를 판단하는 기준으로 사용되며, 일반적으로 0.05 또는 0.01과 같은 유의 수준(significance l...
# 무한극한 ## 개요 무한극한(infinite limit)은 수학에서 함수의 극한이 유한한 값이 아닌 **무한대(∞)**로 발산하는 경우를 의미합니다. 이 개념은 미적분학에서 함수의 행동 분석, 점근선(漸近線) 탐구, 연속성 판단 등에 핵심적인 역할을 합니다. 무한극한은 수치적으로 정의된 극한이 아닌 **함수의 성질**을 나타내며, 이는 함수가 특정 값...
# 연쇄법칙 (Chain Rule) ## 개요/소개 연쇄법칙(Chain Rule)은 미적분학에서 복합함수(composite function)의 도함수를 계산하는 기본적인 규칙이다. 두 함수 $ f(x) $와 $ g(x) $가 주어졌을 때, $ h(x) = f(g(x)) $로 정의된 복합함수의 도함수는 $ h'(x) = f'(g(x)) \cdot g'(x)...
# 나눗셈 규칙 ## 개요 나눗셈 규칙(Quotient Rule)은 미적분학에서 두 함수의 비(商)를 미분할 때 사용하는 기본적인 도함수 계산법이다. 이는 분자와 분모가 각각 다른 함수로 구성된 경우, 단순히 분자와 분모를 따로 미분한 후 나누는 것이 아니라, 특정 공식을 통해 정확하게 도함수를 구할 수 있도록 한다. 본 문서에서는 나눗셈 규칙의 ...
# 곱셈 규칙 (Product Rule) ## 개요 곱셈 규칙은 미적분학에서 두 함수의 곱을 미분할 때 사용하는 기본적인 도함수 계산법이다. 이 규칙은 단순히 각 함수를 별도로 미분한 후 곱하는 것이 아니라, **첫 번째 함수의 도함수와 두 번째 함수의 곱**과 **첫 번째 함수와 두 번째 함수의 도함수의 곱**을 더해야 한다는 점에서 중요하다. 이 규칙...
# 극한 ## 개요 극한(limit)은 수학에서 함수의 행동을 분석하는 데 핵심적인 개념으로, 특정 점에 가까운 입력값에 대한 출력값의 추세를 나타냅니다. 미적분학의 기초가 되며, 도함수와 적분의 정의에 필수적이며, 물리학, 공학 등 다양한 분야에서 응용됩니다. 극한은 수렴과 발산을 이해하는 데 중요한 역할을 하며, 함수의 연속성, 미분 가능성 등...