검색 결과

"추가"에 대한 검색 결과 (총 314개)

도함수

교육 > 수학 > 미적분학 | 익명 | 2025-07-16 | 조회수 29

# 도함수 ## 개요 도함수(derivative)는 수학에서 함수의 변화율을 나타내는 개념으로, 미적분학의 핵심 주제 중 하나입니다. 특정 점에서의 순간적인 변화율이나 기울기를 계산하는 데 사용되며, 물리학, 공학, 경제학 등 다양한 분야에서 응용됩니다. 도함수를 통해 함수의 최대/최소값, 곡선의 기울기, 가속도 등을 분석할 수 있습니다. --- ##...

도함수

기술 > 수학 > 미적분학 | 익명 | 2025-07-16 | 조회수 18

# 도함수 ## 개요 도함수(derivative)는 수학에서 함수의 변화율을 나타내는 개념으로, 미적분학의 핵심 주제 중 하나이다. 특정 점에서의 순간적인 변화율이나 곡선의 접선 기울기를 계산하는 데 사용된다. 도함수는 물리학, 공학, 경제학 등 다양한 분야에서 응용되어 중요한 역할을 한다. ## 정의와 수학적 표현 ### 극한을 통한 정의 도함수는 함...

표준편차

과학 > 통계학 > 회귀분석 | 익명 | 2025-07-16 | 조회수 25

# 표준편차 ## 개요 표준편차(Standard Deviation)는 통계학에서 데이터의 분산도를 측정하는 대표적인 지표로, 평균값을 중심으로 데이터가 얼마나 퍼져 있는지를 수치화한 값이다. 이 개념은 과학적 연구, 금융 분석, 공학 등 다양한 분야에서 활용되며, 특히 회귀분석에서 모델의 예측 정확도를 평가하는 데 중요한 역할을 한다. --- ## 정...

평균

과학 > 통계학 > 회귀분석 | 익명 | 2025-07-16 | 조회수 28

# 평균 ## 개요 평균은 통계학에서 자주 사용되는 중심 경향성 측도로, 데이터 집합의 대표값을 나타냅니다. 주로 산술 평균, 기하 평균, 조화 평균 등으로 구분되며, 회귀 분석과 같은 통계적 모델링에서 중요한 역할을 합니다. 본 문서에서는 평균의 정의, 종류, 통계학에서의 활용 및 회귀 분석과의 연관성을 설명합니다. --- ## 1. 평균...

좌표기하

교육 > 수학 > 기하학 | 익명 | 2025-07-16 | 조회수 14

# 좌표기하 ## 개요 좌표기하는 수학의 기하학 분야에서 **직교좌표계**를 활용하여 도형을 대수적 방식으로 표현하고 분석하는 방법론이다. 이는 17세기에 르네 드카르트(René Descartes)가 고안한 해석기하(Analytic Geometry)의 핵심 개념으로, 기존의 순수 기하학과 대수학을 통합하여 수학적 문제를 해결하는 데 중요한 도구로 사용된다...

연산

교육 > 수학 > 통계 | 익명 | 2025-07-15 | 조회수 26

# 연산 ## 개요 연산(Operations)은 수학과 통계에서 데이터를 처리하고 분석하기 위해 사용되는 기본적인 계산 및 논리적 절차를 의미합니다. 이는 단순한 산술 계산부터 복잡한 통계 모델링까지 다양한 영역에 적용되며, 데이터의 특성 파악과 결과 도출에 필수적인 역할을 합니다. 본 문서에서는 연산의 주요 유형, 통계 분야에서의 활용 방식, 그...

수학

교육 > 수학 > 기초수학 | 익명 | 2025-07-15 | 조회수 44

# 수학 ## 개요 수학은 양, 구조, 공간 및 변화와 같은 추상적 개념을 탐구하는 체계적인 학문이다. 고대부터 현대까지 인간의 사고와 과학 기술 발전에 깊이 관여하며, 자연과학, 공학, 경제학 등 다양한 분야에서 필수적인 도구로 활용된다. 수학은 **기초수학**과 **심화수학**으로 나뉘며, 본 문서에서는 기초수학의 핵심 개념과 역사적 배경을 중심으로 ...

접합 왁스

농업 > 재배 기술 > 접합 기법 | 익명 | 2025-07-15 | 조회수 21

# 접합 왁스 ## 개요/소개 접합 왁스(Grafting Wax)는 식물의 접합(grafting) 과정에서 사용되는 보호용 코팅 물질로, 접합 부위의 수분 손실 방지와 병원균 침투 차단을 목적으로 합니다. 이는 농업 및 정원 가꾸기에서 중요한 기술 중 하나로, 특히 열대 과일나무(예: 오렌지, 포도)나 관상용 식물의 재배에 널리 활용됩니다. 접합 왁스...

활엽층

농업 > 재배 기술 > 접합 기법 | 익명 | 2025-07-15 | 조회수 22

# 활엽층 ## 개요/소개 활엽층(leaf layer)은 농업 및 원예에서 식물 생육 환경을 개선하기 위해 자연적으로 쌓인 낙엽이나 유기물을 활용한 토양 관리 기법이다. 이는 토양의 수분 유지, 온도 조절, 영양소 공급 등 다양한 역할을 수행하며, 특히 재배 기술에서 중요한 요소로 작용한다. 활엽층은 단순히 쓰레기 처리를 넘어, 지속 가능한 농업 실천...

기체 압력

과학 > 천문학 > 우주물리학 | 익명 | 2025-07-14 | 조회수 25

# 기체 압력 (Gas Pressure) ## 개요/소개 기체 압력은 분자나 원자가 운동하며 충돌하는 과정에서 발생하는 힘의 측도로, 물리학과 천문학에서 중요한 개념이다. 우주물리학에서는 별 내부, 성간 가스 구름, 행성 대기 등 다양한 환경에서 기체 압력이 열역학적 균형, 중력 붕괴, 방사선 전달 등의 현상을 결정짓는 핵심 요소로 작용한다. 이 문서에서...

중력 붕괴

과학 > 천체물리학 > 중력 현상 | 익명 | 2025-07-14 | 조회수 28

# 중력 붕괴 ## 개요 중력 붕괴는 우주 공간에서 물체의 질량이 극단적으로 집중되어 중력장이 강해지면서 발생하는 현상이다. 이는 주로 별의 진화 과정에서 나타나며, 별 내부의 열핵 반응이 멈추면 중력이 압력을 이기고 물질을 중심으로 수축하게 된다. 중력 붕괴는 블랙홀 형성, 중성자별 생성 등 극한의 천체 현상과 밀접한 관련이 있으며, 아인슈타인의 일반 ...

PHEV

기술 > 자동차 > 전기차 | 익명 | 2025-07-14 | 조회수 33

# PHEV ## 개요 PHEV(Plug-in Hybrid Electric Vehicle)는 **전기 모터**와 **내연기관**(가솔린 또는 디젤 엔진)을 결합한 하이브리드 전기차의 한 형태로, 외부 전원으로 배터리를 충전할 수 있는 특징을 가집니다. 이 기술은 전기차(BEV)와 하이브리드 전기차(HEV)의 장점을 결합하여 **연비 향상**, **...

비수용성 전해질

기술 > 에너지 > 배터리 | 익명 | 2025-07-14 | 조회수 30

# 비수용성 전해질 ## 개요 비수용성 전해질은 수분을 포함하지 않는 유기 용매와 이온화된 염의 혼합물로 구성된 전해질입니다. 이는 리튬 이온 배터리, 고체 전해질 배터리 등 현대 에너지 저장 시스템에서 핵심적인 역할을 합니다. 수용성 전해질과 달리, 비수용성 전해질은 높은 전압 범위에서 안정성을 유지하며, 이온 전도도를 향상시켜 배터리의 에너지 ...

로짓

기술 > 데이터과학 > 분석 | 익명 | 2025-07-14 | 조회수 17

# 로짓(Logit) ## 개요 로짓(logit)은 통계학과 데이터 과학에서 중요한 개념으로, 확률(probability)을 **로그-오즈(log-odds)** 형태로 변환하는 함수입니다. 이는 주로 **로지스틱 회귀**(logistic regression)와 같은 분류 모델에서 사용되며, 이진 결과(예: 성공/실패, 승리/패배)를 예측할 때 유용합니다....

과적합

기술 > 인공지능 > 머신러닝 | 익명 | 2025-07-14 | 조회수 26

# 과적합 (Overfitting) ## 개요/소개 과적합(overfitting)은 머신러닝 모델이 훈련 데이터에 지나치게 적응하여, 새로운 데이터에 대한 일반화 능력이 떨어지는 현상을 의미합니다. 이는 모델이 학습 데이터의 **노이즈**와 **특수한 패턴**을 포함해 학습하게 되면서 발생하며, 훈련 성능은 우수하지만 테스트 성능은 저하되는 문제가 있습니...

L1 정규화

기술 > 인공지능 > 머신러닝 | 익명 | 2025-07-14 | 조회수 24

# L1 정규화 ## 개요/소개 L1 정규화(L1 Regularization)는 머신러닝 모델의 과적합(overfitting)을 방지하기 위해 사용되는 중요한 기법 중 하나입니다. 이 방법은 모델의 파라미터(계수)에 절대값을 기반으로 페널티를 추가하여, 불필요한 특성(feature)을 제거하고 모델의 단순성을 유지합니다. L1 정규화는 특히 **스파시...

드롭아웃

기술 > 인공지능 > 머신러닝 | 익명 | 2025-07-14 | 조회수 28

# 드롭아웃 (Dropout) ## 개요 드롭아웃(Dropout)은 인공지능(AI) 분야에서 네트워크 과적합(overfitting)을 방지하기 위한 **정규화 기법**으로, 신경망의 훈련 중 일부 뉴런을 무작위로 비활성화하는 방법이다. 이 기법은 2014년 제프리 힌턴(Jeffrey Hinton) 등이 발표한 논문에서 처음 소개되었으며, 현재 딥러닝 모델...

컨볼루션 신경망

기술 > 인공지능 > 머신러닝 | 익명 | 2025-07-14 | 조회수 23

# 컨볼루션 신경망 ## 개요 컨볼루션 신경망(Convolutional Neural Network, CNN)은 이미지 처리 및 컴퓨터 비전 분야에서 널리 사용되는 인공신경망의 한 종류입니다. 주로 2차원 또는 3차원 데이터(예: 이미지, 영상)를 자동으로 특징을 추출하고 분류하는 데 효과적입니다. CNN은 계층 구조를 통해 입력 데이터에서 계층적인...

망각 게이트

기술 > 인공지능 > 머신러닝 | 익명 | 2025-07-14 | 조회수 21

# 망각 게이트 (Forget Gate) ## 개요/소개 망각 게이트는 인공지능 분야에서 특히 **장기 기억 신경망(LSTM, Long Short-Term Memory)**의 핵심 구성 요소로, 시계열 데이터 처리에 있어 중요한 역할을 합니다. 이 기술은 전통적인 순환 신경망(RNN)의 한계인 "긴급 의존성 문제"를 해결하기 위해 설계되었습니다. 망각 게...

입력 게이트

기술 > 인공지능 > 머신러닝 | 익명 | 2025-07-14 | 조회수 57

# 입력 게이트 ## 개요 입력 게이트는 인공지능 분야에서 특히 **장기 기억 유닛**(LSTM)과 같은 **순환 신경망**(RNN) 구조에서 핵심적인 역할을 하는 구성 요소이다. 이 게이트는 시퀀스 데이터 처리 중 새로운 정보가 어떻게 저장되는지를 제어하며, 장기 의존성을 관리하는 데 기여한다. 입력 게이트의 작동 원리는 신경망의 **세포 상태**(ce...