# 가중치 행렬 ## 개요 **가중치 행렬**(Weight Matrix)은 인공신경망(Artificial Neural Network, ANN)의 핵심 구성 요소 중 하나로, 뉴런 간의 연결 강도를 수치적으로 표현한 행렬입니다. 이 행렬은 입력 신호가 네트워크를 통해 전파될 때 각 연결 경로에 적용되는 가중치를 담고 있으며, 신경망이 학습하는 과정은 주로...
검색 결과
"행렬"에 대한 검색 결과 (총 186개)
# 행렬-벡터 곱셈 행렬-벡터 곱셈은 선형대수의 핵심 연산 중 하나로, 행렬과 벡터를 결합하여 새로운 벡터를 생성하는 수학적 연산입니다. 이 연산은 선형 변환, 컴퓨터 그래픽스, 기계 학습, 물리 시뮬레이션 등 다양한 분야에서 광범위하게 활용됩니다. 본 문서에서는 행렬-벡터 곱셈의 정의, 계산 방법, 성질, 기하학적 의미 및 실제 응용 사례를 중심으로 설...
# 동시출현 행렬 ## 개요 **동시출현 행렬**(Co-occurrence Matrix)은 자연어처리(NLP) 분야에서 언어의 통계적 구조를 분석하고 단어 간의 의미적 관계를 모델링하는 데 사용되는 중요한 데이터 구조입니다. 이 행렬은 특정한 문맥 내에서 두 단어가 함께 등장하는 빈도를 기록하며, 단어의 분포 가설(Distributional Hypoth...
# 의사역행렬 의사역행렬(Pseudoinverse), 또는 무어-펜로즈 역행렬(Moore-Penrose Inverse)은 선형대수학에서 정방행렬이 아니거나 비가역적인 행렬에 대해 일반화된 역행렬을 제공하는 중요한 개념이다. 실제 응용에서 많은 문제들이 정방행렬이 아닌 비정방행렬로 표현되며, 이 경우 일반적인 역행렬을 정의할 수 없기 때문에 의사역행렬은 회...
# 그레이 레벨 공동 발생 행렬 ## 개요 **그레이 레벨 공동 발생 행렬**(Gray-Level Co-occurrence Matrix, 이하 GLCM)은 디지털 이미지의 **텍스처 특성**을 정량적으로 분석하기 위한 대표적인 통계적 기법입니다. 이 기법은 픽셀 간의 회색조 값(그레이 레벨)의 공간적 관계를 행렬 형태로 표현함으로써, 이미지의 거칠기, ...
# 행렬 ## 개요 **행렬**(Matrix)은학, 특히 **형대수**(Linear)에서 핵심적인으로, 수치나 기호를 직사각형 형태로 배열하여 표현한 구조입니다.렬은 방정식의 계수를계적으로 표현하고, 선형 변환을 기술, 컴퓨터 그래픽스, 통계,신러닝 등 다양한 기술 분야에서 널리 활용됩니다. 행렬은 **행**(row)과 **열**(column)로 구성...
# 행렬-행렬 연산 행렬-행렬 연은 선형대수의 핵심 개념 중 하나로, 두 개 이상 행렬 간에할 수 있는 다양한 수학적 연산을 포함합니다. 이러한 연산 수치해석 컴퓨터 그래픽스, 기계학습, 물리학, 경학 등 다양한 분에서 널리 활용되며, 특히 데이터의 선형 변환과 시스템 해석에 핵심적인 역할을 합니다. 본 문서에서는 행렬 간의 주요 연산인 덧셈, 뺄셈, 곱...
# 행렬-벡터 연산 행렬-벡터산은 선형대수의 핵심 개념 중 하나로, 데이터과학 머신러닝, 컴퓨터 그래픽스, 물리학 등 다양한 분야에서 광범위하게 활용됩니다. 특히 고차원 데이터를 처리하고 변환하는 데 있어 행렬과 벡터의 연산은 계산 효율성과 수학적 표현의 간결성을 제공합니다. 본 문서에서는 행렬-벡터 연산의 정의, 기본 연산 종류 계산 방법, 활용 사례 ...
# 공출현 행렬 ## 개요 **공출 행렬**(Co-occurrence)은 자연어처리(Natural Language Processing, NLP) 분야에서 언어의 통계적 구조를 분석하고 단어 간의 의미적 관계를 모델링하는 데 핵심적으로 사용되는 데이터 구조이다. 이 행렬은 특정한 문맥 창(window) 내에서 함께 등장하는 단어들의 빈도를 기록함으로써, ...
행렬식 행렬식**(式, Determinant)은 선형대수학에서 정방행렬(square matrix)에 대응되는 하나의 스칼라 값으로, 행렬의 여러 중요한 성질을 판별하는 데 핵심적인 역할을 한다. 행렬식은 행렬이 가역(invertible)인지 여부, 선형 방정식의 해의 존재성, 벡터 공간에서의 기하학적 해석(예: 부피 변화율) 등과 밀접한 관련이 있다. 이...
# 헤시안 행렬 헤시안 행렬(Hessian Matrix)은 다변수 실수값 함수의 **이계도함수**(second-order partial derivatives)를 정사각형 행렬 형태로 배열한 것으로, 함수의 국소적 곡률 정보를 제공하는 중요한 수학적 도구입니다. 선형대수학과 최적화 이론, 머신러닝, 물리학 등 다양한 분야에서 널리 사용되며, 특히 함수의 극...
# 희소 행렬 ## 개요 **희소 행렬**(Sparse)은 행렬의 대부분의소가 0인 특수한 형태의 행렬을 의미합니다. 일반적으로 수치 계산, 머신러닝, 그래프 이론, 자연어 처리, 네트워크 분석 등 다양한 데이터 과학 분야에서 대규모 데이터를 효율적으로 처리하기 위해 사용됩니다. 희소 행렬은 데이터의 크기가 크지만 실제로 유의미한 정보(0이 아닌 값)를...
# 단어-문서 행렬 ## 개요 **단어-문서 행렬**(Term-Document Matrix, TDM)은 자연어 처리(Natural Language Processing, NLP)와 정보 검색(Information Retrieval) 분야에서 텍스트 데이터를 수치화하여 분석하기 위한 기본적인 데이터 구조 중 하나입니다. 이 행렬은 여러 문서의 집합에서 각 ...
# RNN 기반 모델 ## 개요 RNN 기반 모델은 **순환 신경망**(Recurrent Neural Network, RNN)을 활용한 음성 인식 시스템의 핵심 구성 요소로, 시간에 따라 변화하는 시계열 데이터인 음성 신호를 효과적으로 처리할 수 있도록 설계된 머신러닝 모델이다. 음성은 시간 축을 따라 연속적으로 발생하는 파형 정보이므로, 과거의 입력이...
# 뉴턴 방법 ## 개요 **뉴턴 방법**(Newton's Method), 또는 **뉴턴-랩슨 방법**(Newton-Raphson Method)은 비선형 방정식의 근을 수치적으로 근사하는 데 사용되는 대표적인 반복적 최적화 알고리즘 중 하나이다. 이 방법은 주어진 함수 $ f(x) $의 실근(real root)을 빠르게 찾아내기 위해 함수의 접선(tan...
# 고유값 ## 개요 **고유값**(eigenvalue)은 선형대수학에서 행렬과 선형변환의 핵심적인 성질을 설명하는 중요한 개념이다. 주어진 정방행렬 \( A \)에 대해, 특정한 벡터 \( \mathbf{v} \)가 행렬 \( A \)를 곱했을 때 그 방향이 변하지 않고 크기만 스칼라배로 변하는 경우, 이 스칼라 값을 **고유값**(eigenvalue...
# AMD Optimizing CPU Libraries AMD Optimizing CPU Libraries(이하 AOCL)는 AMD 프로세서의 성능을 극대화하기 위해 특화된 고성능 수학 라이브러리의 집합입니다. 이 라이브러리는 과학 계산, 머신러닝, 데이터 분석, 고성능 컴퓨팅(HPC) 등 다양한 분야에서 활용되는 핵심 수치 연산을 최적화하여, AMD 기...
# AVX **AVX**(Advanced Vector Extensions)는 인텔이 개발한 SIMD(Single Instruction, Multiple Data) 명령어 집합으로, 프로세서의 벡터 처리 성능을 크게 향상시키기 위해 설계되었습니다. AVX는 기존의 SSE(SSE2~SSE4) 명령어 집합을 확장하여 더 넓은 데이터 폭과 더 효율적인 명령어 인...
# Agglomerative ## 개요 **Agglomerative**는 군집화(Clustering) 기법 중 하나로, **계층적 군집화**(Hierarchical Clustering)의 대표적인 하향식 접근 방식입니다. 이 알고리즘은 각 데이터 포인트를 초기에 개별 군집으로 간주한 후, 유사도가 높은 군집을 점진적으로 병합하여 하나의 큰 군집으로 만드...
# 회귀 계수 회귀 계수(Regression Coefficient)는 통계학에서 회귀 분석(Regression Analysis)을 수행할 때 나타나는 핵심 개념으로, 독립 변수(설명 변수)가 종속 변수(반응 변수)에 미치는 영향의 크기와 방향을 수치적으로 나타냅니다. 회귀 분석은 변수 간의 관계를 모델링하고 예측하는 데 널리 사용되며, 회귀 계수는 이러한...