검색 결과

"최적화 문제"에 대한 검색 결과 (총 46개)

# 입자 군집 최적화 ## 개요 **입자 군집 최적화**(Particle Swarm Optimization, PSO)는 1995년 제임스 케네디(James Kennedy)와 러셀 유버트(Russell Eberhart)에 의해 제안된 **메타휴리스틱 최적화 알고리즘**으로, 생물의 군집 행동(예: 새 떼의 비행, 물고기 떼의 이동)을 모방하여 최적해를 탐...

이산 최적화

기술 > 데이터과학 > 최적화 | 익명 | 2025-10-12 | 조회수 14

# 이산 최적화 개요 이산 최적화(Discrete Optimization)는적화 문제의 한 분야로, 결정가 **이산적인 값**(즉, 연적이지 않은 특정한 값들, 예: 정수, 유한 집합의 원소 등)을 취할 때 그 변수들의 조합을 통해 목적함수를 최소화하거나 최대화하는 문제를 다룹니다. 이는 세계의 많은 문제들—예를 들어 스케줄링, 경로 계획, 자원 할당...

선형 탐색

기술 > 수치최적화 > 최적화 기법 | 익명 | 2025-10-07 | 조회수 11

# 선형 탐색 선형 탐색(Linear Search)은치 최적화 분야에서되는 기본적인 최적화 기 중 하나로, 주로 **기기 하강법**(Gradient Descent)과 같은 반복적 최적화 알고리의 핵심 구성소로 활용된다. 이 기법은 주어진 탐색 방향에서 목적 함수를 최소화하는 최적의 스텝 사이즈(step size) 또는 **학습률**(learning rat...

수렴 속도

기술 > 수치최적화 > 수렴 성질 | 익명 | 2025-10-07 | 조회수 16

# 수렴 속도 수렴 속도(Convergence Rate) 수치최적화 알고리 최적해에 접근하는 속도를 수학적으로 정의한 개념이다. 최적화 문제를 해결하는 과에서 반복적인 계산을 통해 해를 점진적으로 개선하는데, 이 과정에서 해가 실제 최적해에 얼마나 빠르게 가까워지는지를 평가하는 척도가 바로 수렴 속도이다. 수렴 속도는 알고리즘의 효율성과 실용성을 판단하는...

로피탈의 정리

교육 > 수학 > 미적분학 | 익명 | 2025-10-04 | 조회수 17

# 로피탈의 정리 로피탈의 정리(L'Hpital's Rule)는적분학에서한을 구할 때용하게 사용되는리 중 하나로 특정 조건 하에서 부정형(indeterminate form)의 극한을 미을 통해 계산 수 있도록 해줍니다. 특히, $\frac{0}{0}$ 또는 $\frac{\infty}{\infty}$ 형태의 극한을룰 때 자주 활용되며, 복잡한 함수의 극한을...

포트폴리오 최적화

경제 > 금융공학 > 투자 최적화 | 익명 | 2025-10-03 | 조회수 20

# 포트폴리오 최화 ## 개요 포트리오 최적화ortfolio Optimization)는 투자자가 자산에 투함으로써 리스크 분산시키고, 주어진 리스크 수준에서 기대 수익을 극대화하거나, 목표 수익률을 달성하기 위해 리스크를 최소화하는정을 말한다 이는 현대 금공학의 핵심 개념 중 하나로 해리 마코츠(Harry Markowitz)가 1952년 제안한현대 포트...

블록화

기술 > 수치계산 > 최적화기법 | 익명 | 2025-10-01 | 조회수 18

# 블록화 ## 개요 **블록화**()는 수치계산 및적화 기법 분야에서 대모 문제를 보다 관리 가능한 작은 단위인 "블록"(Block)으로 나누어 처리하는 전략을 의미합니다. 이 기법은 계산의 효율성과 메모리 접근 패턴을 개선하며,렬 처리 및 알고리즘의 수렴 속도를 향상시키는 데 널리됩니다. 특히 대용량 데이터나 고차원 변수를 다루는 최적화 문제에서 블...

방향도함수

수학 > 다변수 미적분학 > 방향도함수 | 익명 | 2025-09-28 | 조회수 17

# 방향도함수 방향도함수(方向導數, Directional Derivative)는 다변수 미적분학에서 개념 중 하나로, 함수가 방향으로 변화하는 비율을 나타냅니다. 단순 좌표축 방향(예: x, y축)으로의 변화율인 편미분을 일반화하여, 임의의 방향으로의 변화율을 계산할 수 있게 해줍니다. 이는 함수의 기울기와 최적화, 물리학적 모델링 등 다양한 분야에서 핵...

확률적 모델링

기술 > 통계학 > 확률론 | 익명 | 2025-09-28 | 조회수 18

# 확률적 모델링 ## 개요 **확률 모델링**(Probabilistic)은 불확실성과 랜성을 내재한 현상이나 시스템을 수학적으로 표현하고 분석하기 위한 통계학 및 확률론의 핵심 기법이다. 현실 세계의 많은 현상은 결정론적으로 예측하기 어려우며, 관측 오차, 자연스러운 변동성, 또는 정보의 부족 등으로 인해 확률적인 접근이 필요하다. 확률적 모델링은 이...

MSE

기술 > 데이터과학 > 회귀 분석 | 익명 | 2025-09-27 | 조회수 19

# MSE ## 개요 **MSE**(Mean Squared Error, 평균 제곱 오차)는 회귀 분석에서 예측 모델의 정확도를 평가하는 데 널리 사용되는 지표입니다. 이 값은 예측값과 실제 관측값 사이의 차이(오차)를 제곱한 후, 그 평균을 계산함으로써 모델의 전반적인 오차 크기를 수치화합니다. MSE는 회귀 모델의 성능을 비교하거나 하이퍼파라미터 최적...

미분가능

수학 > 미적분학 > 미분학 | 익명 | 2025-09-26 | 조회수 21

미분가능미분가능(differentiable)은 미분학에서 매우 개념으로, 함수의 특정 지에서 접선이 존재하고 그 지점에서의 기울기를 잘 정의할 수 있는 성질을 의미한다. 이는 함수의 국소적인율을 분석하는 데 핵심적인 역할 하며, 연성과 함께 미적분학의 기초를 형성한다. 미분가능성은 물리학, 공학, 경제학 등 다양한 분야에서 함수의 행동을 예측하고 최적화 문...

임계점

수학 > 미적분학 > 미분학 | 익명 | 2025-09-16 | 조회수 57

# 임계점 ## 개요 임계점(臨界, 영어: critical point) 미분학에서 함수의 국소적 성질을 분석하는 데 핵심적인 개념이다. 함수의 그래프에서 극값(극대 또는 극소)이 존재할 수 있는 후보 지점으로, 함수의 변화율이 0이 되거나 미분이 존재하지 않는 점을 의미한다. 임계점은 함수의 증가와 감소가 전환되는 지점, 즉 극값을 찾는 데 매우 중요한...

완전제곱식

수학 > 대수학 > 특수 다항식 | 익명 | 2025-09-15 | 조회수 28

# 완전제곱식 ## 개요 **완전제식**(完全平方式, Perfect Trinomial)은 대수학 자주 등장하는 특수 다항식의 일종으로, 어떤 이항식의 제곱으로 표현할 수 있는 삼항식을 의미한다. 즉, 두 항의 합 또는 차를 제곱한 결과로 나타나는 다항식이다. 완전제곱식은 인수분해, 방정식 풀이, 제곱근 계산, 이차함수의 꼭짓점 찾기 등 다양한 수학적 응...

L∞ 노름

수학 > 선형대수학 > 노름 | 익명 | 2025-09-11 | 조회수 29

# L∞ 노름 ## 개요 L∞ 노름-infinity norm), **최대 노름**(maximum norm), **균등 노름**(uniform norm), **서프리멈 노름**(supremum norm)은 벡터 공간 또는 함수 공간에서 벡터나 함수의 크기를 측정하는 방법 중 하나로, 선형대수학과 함수해석학에서 중요한 역할을 한다. L∞ 노름은 벡터의 성분...

삼각 부등식

수학 > 선형대수학 > 노름 성질 | 익명 | 2025-09-11 | 조회수 39

# 삼각 부등식 ## 개요 **삼각 부등식**(Triangleequality)은 선대수학에서 벡 공간의 노름orm)이 만해야 하는 핵심 성질 중 하나로, 두 벡터의 합의 크기가 각 벡터의 크기의 합보다 작거나 같다는 원리를 수학적으로 표현한 것이다. 이 부등식은 기하학적 직관에서 유래되었으며, 삼각형에서 임의의 두 변의 길이의 합이 세 번째 변의 길이보...

최적의 경계선

기술 > 인공지능 > 머신러닝 | 익명 | 2025-09-10 | 조회수 26

# 최적의 경계선 ## 개요 **최적 경계선**(Optimal Decision)은 머신러닝, 지도 학습(Supervised Learning)에서 분류(Classification) 문제 해결할 때 사용 핵심 개념 중 하나. 이는 서로 다른 클래스에 속한 데이터 포인트들을 가장 잘 구분할 수 있는 기하학적 경계를 의미합니다. 최적의 경계선은 모델이 새로운 ...

헤시안 행렬

기술 > 수학 > 선형대수학 | 익명 | 2025-09-07 | 조회수 33

# 헤시안 행렬 헤시안 행렬(Hessian Matrix)은 다변수 실수값 함수의 **이계도함수**(second-order partial derivatives)를 정사각형 행렬 형태로 배열한 것으로, 함수의 국소적 곡률 정보를 제공하는 중요한 수학적 도구입니다. 선형대수학과 최적화 이론, 머신러닝, 물리학 등 다양한 분야에서 널리 사용되며, 특히 함수의 극...

최적화

기술 > 데이터과학 > 최적화 알고리즘 | 익명 | 2025-09-06 | 조회수 32

# 최적화 ## 개요 최적화(Opt)는 주어진 조건에서 가장 좋은 해를 찾는 과정을 의미하며, 데이터과학 기계학습, 공학 경제학 등 다양한 분야에서 핵심적인 역할을 한다.과학에서는 모델의 예측 성능을 향상시키기 위해 손실 함수(Loss Function)를 최소화, 제약 조건을 만족하면서 목표 함수를 극대화/극소화하는 작업이 자주 발생한다. 최적화 알고리...