# 모듈러 n 합동 ## 개요 **모듈러 n 합동**(Modular congruence modulo n)은 정수론의 핵심 개념 중 하나로, 두 정수가 어떤 자연수 $ n $으로 나누었을 때 나머지가 같을 경우를 설명하는 관계이다. 이 개념은 수학 전반은 물론 암호학, 컴퓨터 과학, 알고리즘 설계 등 다양한 분야에서 널리 활용된다. 모듈러 합동은 간단하면...
검색 결과
"오일러"에 대한 검색 결과 (총 33개)
# 복소수 복소수(複素數, Complex Number)는 실수부와 허수부로 구성된 수 체계로, 수학 전반과 물리학, 공학 등 다양한 분야에서 핵심적인 역할을 한다. 복소수는 2차 방정식의 해가 실수 범위에서 존재하지 않을 때 그 해를 표현할 수 있는 수학적 도구로 등장하였으며, 현대 수학에서 해석학, 대수학, 기하학 등과 깊은 연관을 맺고 있다. 특히 *...
# 일계 상미분방정식 ## 개요 일계 상미분방정식(一階 常微分方程式, First-order Ordinary Differential Equation)은 미분방정식의 한 종류로, 미지 함수의 **일계 도함수**(즉, 첫 번째 도함수)만을 포함하고 있으며, 독립 변수가 하나인 경우를 다룹니다. 일반적인 형태는 다음과 같습니다: $$ \frac{dy}{dx}...
# 명시적 방법 ## 개요 **명시적 방법**(Explicit Method)은 수치해석에서 편미분방정식(PDE, Partial Differential Equation)을 시간에 따라 수치적으로 해를 구하는 기법 중 하나로, 미래 시간 단계의 해를 현재 또는 과거의 정보만을 사용하여 **직접 계산**할 수 있는 방법을 말한다. 이 방법은 계산 구조가 간단...
# 삼각함수## 개요 삼각함수(三角函數, Trigonometric)는 각도와 직각삼형의 변의율 사이의 관계를 수학적으로 정의한 함수이다.로 평면기하학, 해석기하학, 물리학 공학, 천문학 등 다양한 분야에서 널리 사용되며, 특히 주기적인 현상(예: 파동, 진동, 회전 운동)을 모델링하는 데 핵심적인 역할을 한다. 삼각함수는 기본적으로 **사인**(sin)...
# 암시적 방법 ## 개요 **암시적 방법Implicit Method)은치해석에서 편분방정식DE)을 해하는 대표적인 시간 적분 기법 중 하나로, 주로 시간에 대한 변화를 포함하는 열전도 방정식 나비에-스토크스 방정식 등과 같은 시간 종속적 편미분방정식의 수치 해를 구하는 데 사용된다. 암시적 방법은 명시적 방법(Explicit Method)과 대조되며,...
# 크랭크-니콜슨 방법 크랭크-니슨(Crank-Nicolson)은 시간에 의하는 편미분방식(PDE), 특히산 방정식usion equation)과 열전달 방정식(heat equation 등을 수치적으로석하는 데 널리 사용되는 유한차분법(Finite Difference Method, FDM 중 하나이다. 방법은 **암시적 방법**(implicit method...
# 모듈러 연산 **모듈러 연산**(Mod Arithmetic)은 정수론 핵심 개념 중로, 주어진수를 특정한(모듈러)로 나눈 나머지를 다루는 산술 체계입니다. 이 연산은 수학뿐 아니라 컴퓨터 과학, 암호학, 프로그래밍 등 다양한 분야 널리 활용되며, 특히 **시계 연산**(clock arithmetic)으로 비유되곤 합니다. 예를 들어, 12시간 시계에서...
# 회전 **회전**(rotation)은 기하학 도형이나 점을 평면 공간 내의 한 점(또는 축)을 중심으로 일정한 각도만큼 돌리는 **합동 변환**(congrence transformation)의 일종이다. 회전을 통해어진 도형 원래 도형과 크기와 모양이 동일하며, 이는 도형의 **합동성**(congruence)을 유지한다는 의미이다. 회전은 일상생활뿐 ...
# 과학기술 계산 과학기술 계산(Scientific)은 과학 및 공학 분야의 복잡한 문제를 수치적 방법과 컴퓨터 시뮬레이션을 통해 해결하는 학제 간 기술 영역입니다. 이 분야는 수학, 물리학, 컴퓨터 과학, 공학 등 다양한 분야의 지식을 융합하여 실험적 또는 이론적 접근만으로는 해결하기 어려운 문제를 분석하고 예측하는 데 핵심적인 역할을 합니다. 현대 과...
RSA 암호화리즘 ## 개요 RSA 공개키 암호화(Public-keyography)의 대표적인 알고리 중 하나로, 177년 로널드 리베스트(R Rivest), 아디 샤미르(Adi Shamir), 레오날드 애들먼(Leonard Adleman)이 제안하여 세 사람의 이름 첫 글자를 따서 명명된 알고리즘이다. RSA는 정보의 기밀성, 인증, 디지털 서명 등 ...
# 복소평면 ## 개요 복소평면(complex plane)은 복소수를하학적으로 표현하기 위해 사용하는 2차원 평면으로, 수학 전반에서 복소수의 성질을 시각화하고 분석하는 데 핵심적인 도구이다. 복소수는 실수부와 허수부로 구성므로, 이를 각각 평면의 가로축(실수축)과 세로축(허수축)에 대응시켜 점으로 나타낼 수 있다. 이 평면은 **가우스 평면**(Gau...
# 복소수 복소수(複素數, Complex)는 실수부와 허부로 구성된 수 체계로 수학, 물리학, 공학 등 다양한 분야에서 핵심적인 역할을 한다.소수는 차원 평면상 점으로 시각화할 수, 복소해석학(Complex Analysis의 기초를성한다. 이 문서 복소수의 정, 대수적 성질, 기하적 표현 연산법, 그리고 응용 분야에 대해 체계적으로 설명한다. --- ...
# 복소근 ## 개요 복근(複素, Complex Root)이란정식의 해 실수부와 허부를 모두 가질 수 있는 복소수 형태 근을 의미한다. 특히 실계수 다방정식에서 실수 범위 내 해를 찾을 수 없을 때, 복수 범위로 확장하면 해가 존재하는 경우가 많으며, 이러한 해를 복소근 한다. 복소근은 대학의 핵심 개념 중 하나로,16세기 이후 복소수의 체계적인 도입과...
# 극형식 ##요 복소수는 실수와 허수부 구성된 수 체계, $ z = a + bi $단, $ i = \sqrt{-1 $)의 형태 나타낼 수 있다. 표현을 **직교형식**(또는 대수형식)이라 한다. 그러나 복소수를 평면 상의 점이나 벡터로 해할 때, 직교형식 외에도 **극형**(polar form)이라는 또 다른 표현 방식이 유용하다. 극형식은 복소수를 ...
# 라그랑주 표기 라그랑주 표법(Lagrange's notation)은분을 나타내는 수학 기 체계 중 하나로, 프랑스의 수학자 조제프루이 라그랑주(Joseph-Louis Lagrange의 이름을 따서 명명되었다. 표기법은의 도함수(derivative)를 표현하는 데 널리 사용되며, 특히 미적분학 교육 및 공학, 물리학 등 다양한 분야에서 흔히 등장한다. ...
# 편미분방정식 편미분방정식artial Differential Equation, PDE) 두 개 이상의 독립 변수를는 함수와 그 함수의 편미분들 사이의 관계를 나타내는 수학적 방정입니다. 이는 자연과학, 공학, 경제학 등 다양한 분야에서 물리적 현상을 모델링하고 분석하는 데 핵심적인 도구로 사용되며, 특히 공간과 시간에 따라 변화하는 현상(예: 열전도, ...
# 함수 ## 개요 **함수**(function)는 수학의 가장 기본 되는 개념 중로, 두 집합 사이의 특정한 관계를 의미한다. 간단히 말해 함수는 입력값(독립변수) 하나에 대해 정확히 하나의 출력값(종속변수) 대응시키는 규칙이다 함수는 수학 전반은 물론 물리, 공학, 컴퓨터 과학, 경제학 등 다양한 분야에서 핵심적인 역할을 한다. 함수의 개념은 17...
# 스펙트럴 방법## 개요 스펙트럴 방법(Spectral Method) 편미분방정(PDE, Partial Differential Equation)의 수치적 해를 구 데 사용되는 고급 수치 해석 기법 중 하나로, 주로 주기적 또는 매끄러운 해를 갖는 문제에 적합하다. 이 방법은 유한 차분법(Finite Difference Method)이나 유한 요소법(Fi...
토폴로지 ## 개요 **토폴로지**(topology)는 수학의 한 분야로, 기하학적 도형이나 공간의 **연속적인 변형** 아래에서 보존되는 성질을 연구하는 학문입니다. 즉, 늘이거나 구부리거나 비틀어도 형태가 바뀌지 않는 **위상적 성질**(topological properties)을 다룹니다. 예를 들어, 컵과 도넛은 서로 다른 모양이지만, 토폴로지에...