# 정책 기반 방법 ## 개요 **정책 기반 방법**(Policy-Based Methods)은 강화학습(Reinforcement Learning, RL)의 주요 접근 방식 중 하나로, 에이전트(Agent)가 환경(Environment)과 상호작용하면서 최적의 행동을 선택하기 위해 **직접 정책**(Policy)을 학습하는 방법입니다. 이는 가치 기반 방...
검색 결과
"CDO"에 대한 검색 결과 (총 163개)
# 고유값 ## 개요 **고유값**(eigenvalue)은 선형대수학에서 행렬과 선형변환의 핵심적인 성질을 설명하는 중요한 개념이다. 주어진 정방행렬 \( A \)에 대해, 특정한 벡터 \( \mathbf{v} \)가 행렬 \( A \)를 곱했을 때 그 방향이 변하지 않고 크기만 스칼라배로 변하는 경우, 이 스칼라 값을 **고유값**(eigenvalue...
# 수치 조리개 ## 개요 **수치 조리개**(Numerical Aperture, 약칭: NA)는 광학 시스템, 특히 현미경, 광섬유, 렌즈 등에서 빛을 모으는 능력을 정량적으로 나타내는 중요한 물리량이다. 수치 조리개는 시스템의 해상도와 밝기, 심도 등 여러 성능 지표와 밀접한 관련이 있으며, 특히 고배율 현미경 관찰이나 고속 광통신에서 그 중요성이 ...
# 행렬-벡터 곱셈 행렬-벡터 곱셈은 선형대수의 핵심 연산 중 하나로, 행렬과 벡터를 결합하여 새로운 벡터를 생성하는 수학적 연산입니다. 이 연산은 선형 변환, 컴퓨터 그래픽스, 기계 학습, 물리 시뮬레이션 등 다양한 분야에서 광범위하게 활용됩니다. 본 문서에서는 행렬-벡터 곱셈의 정의, 계산 방법, 성질, 기하학적 의미 및 실제 응용 사례를 중심으로 설...
# 모듈러 n 합동 ## 개요 **모듈러 n 합동**(Modular congruence modulo n)은 정수론의 핵심 개념 중 하나로, 두 정수가 어떤 자연수 $ n $으로 나누었을 때 나머지가 같을 경우를 설명하는 관계이다. 이 개념은 수학 전반은 물론 암호학, 컴퓨터 과학, 알고리즘 설계 등 다양한 분야에서 널리 활용된다. 모듈러 합동은 간단하면...
# 복소수 복소수(複素數, Complex Number)는 실수부와 허수부로 구성된 수 체계로, 수학 전반과 물리학, 공학 등 다양한 분야에서 핵심적인 역할을 한다. 복소수는 2차 방정식의 해가 실수 범위에서 존재하지 않을 때 그 해를 표현할 수 있는 수학적 도구로 등장하였으며, 현대 수학에서 해석학, 대수학, 기하학 등과 깊은 연관을 맺고 있다. 특히 *...
# 계수 ## 개요 **계수**(coefficient)는 통계학, 특히 회귀 분석에서 매우 중요한 개념으로, 독립 변수(independent variable)가 종속 변수(dependent variable)에 미치는 영향의 크기와 방향을 수치적으로 나타내는 값이다. 회귀 분석을 통해 추정되는 계수는 변수 간의 관계를 정량적으로 해석하는 데 핵심적인 역할...
# McKinsey & Company ## 개요 **맥킨지 앤 컴퍼니**(McKinsey & Company)는 세계 최고의 경영 컨설팅 기업 중 하나로, 전 세계 주요 기업, 정부 기관, 비영리 조직을 대상으로 전략, 운영, 기술, 조직 개편 등 다양한 분야의 컨설팅 서비스를 제공하고 있다. 1926년에 설립된 이래로 글로벌 비즈니스 리더십과 혁신적인 ...
# EfficientNet-B0 ## 개요 **EfficientNet-B0**은 구글 리서치(Google Research)에서 2019년에 제안한 컨볼루션 신경망(Convolutional Neural Network, CNN) 아키텍처로, 깊이, 너비, 해상도의 세 가지 축을 동시에 조정하여 모델의 확장성과 효율성을 극대화한 **EfficientNet**...
# 추세 ## 개요 **추세**(Trend)는 시계열 분석(Time Series Analysis)에서 시간에 따라 관측되는 데이터의 장기적인 방향성 또는 패턴을 의미한다. 일반적으로 추세는 데이터가 일정한 방향으로 증가하거나 감소하는 경향을 나타내며, 시계열 데이터의 중요한 구성 요소 중 하나로 간주된다. 시계열 데이터는 일반적으로 **추세**(Tren...
# 벡터 ## 개요 벡터(Vector)는 수학, 물리학, 공학, 컴퓨터 과학 등 다양한 분야에서 핵심적인 개념으로 사용되는 수학적 객체이다. 직관적으로 벡터는 **크기**(magnitude)와 **방향**(direction)을 동시에 가지는 양으로 이해할 수 있다. 예를 들어, 속도, 힘, 전기장 등은 모두 방향과 크기를 가지므로 벡터로 표현된다. 반면...
# 하이젠베르그 ## 개요 베르너 카를 하이젠베르크(Werner Karl Heisenberg, 1901년 12월 5일 – 1976년 2월 1일)는 20세기 최고의 이론 물리학자 중 한 명으로, 양자역학의 기초를 세운심 인물이다. 그는 불확정성안자로 가장 잘 알려져 있으며, 행렬역학의 창시자로서 현대 물리학의 패러다임 전환에 결정적인 기여를 했다. 하이젠...
# 불확정성 원리 ## 개요 **불확정성 원리**(Uncertainty Principle)는 양자역학의 근본적인 원리 중 하나로, 특정 물리량 쌍(예: 위치와 운동량)을 동시에 무한한 정밀도로 측정할 수 없다는 것을 명시한다. 이 원리는 1927년 독일의 물리학자 **베르너 하이젠베르크**(Werner Heisenberg)에 의해 제안되었으며, 고전역학...
# 양자역학 ## 개요 양자역학(Quantum Mechanics)은 원자 및 아원자 입자와 같은 미시 세계의 물리적 현상을 설명하는 이론 체계로, 20세기 초에 발전한 현대 물리학의 핵심 분야 중 하나이다. 고전역학이 행성의 운동이나 일상적인 물체의 움직임을 정확히 설명할 수 있지만, 전자, 광자, 원자와 같은 매우 작은 스케일의 입자들은 고전 물리 법...
# 비표준화 베타계수 ## 개요 **비표준화 베타계수**(Unstandardized Beta Coefficient)는 회귀분석에서 독립변수(설명변수)가 종속변수(반응변수)에 미치는 영향의 크기를 나타내는 통계량 중 하나로, 변수들의 원래 측정 단위를 유지한 상태에서 추정된 회귀계수를 의미한다. 일반적으로 회귀분석 결과 출력 시 **B** 또는 **β**...
# 독립변수 ## 개요 **독립변수**(independent variable)는 통계학, 특히 회귀분석에서 중요한 개념 중 하나로, 어떤 결과나 현상에 영향을 미칠 수 있다고 가정되는 변수를 의미한다. 독립변수는 종속변수(dependent variable)의 변화를 설명하거나 예측하는 데 사용되며, 실험이나 관찰 연구에서 연구자가 조작하거나 통제할 수 ...
# 척도인자 ## 개요 **척도인자**(Scale Factor)는 현대 **우주론**(cosmology)에서 우주의 크기와 시간에 따른 팽창을 수학적으로 기술하는 데 사용되는 핵심 개념이다. 척도인자는 프리드만-르메트르-로버트슨-워커(Friedmann-Lemaître-Robertson-Walker, 이하 FLRW) 계량에서 도입되며, 우주의 거시적인 기...
# 적색편이 ## 개요 적색편이(Redshift)는 천문학에서 전자기파(특히 빛)의 파장이 관측자에 의해 길어진 상태로 측정되는 현상을 말한다. 이는 스펙트럼의 가시광선 영역에서 파장이 빨간색 쪽(장파장 쪽)으로 이동하는 것처럼 보이기 때문에 '적색편이'라는 이름이 붙었다. 반대로 파장이 짧아지는 현상은 **청색편이**(Blueshift)라고 한다. ...
# 이상기체 법칙 이상기체 법칙(Ideal Gas Law)은 기체의 압력, 부피, 온도, 그리고 물질의 양 사이의 관계를 수학적으로 설명하는 열역학의 핵심 법칙 중 하나이다. 이 법칙은 실제 기체의 행동을 근사화하기 위해 도입된 '이상기체(ideal gas)'라는 가상의 모델을 기반으로 하며, 고온·저압 조건에서 대부분의 기체가 이 법칙을 잘 따르는 것으...
# Histogram of Oriented Gradients ## 개요 **Histogram of Oriented Gradients**(HOG, 기울기 방향 히스토그램)는 컴퓨터비전 및 이미지 처리 분야에서 객체 검출(object detection)을 위해 널리 사용되는 특징 추출(feature extraction) 기법입니다. 이 기법은 이미지의 지역...