# 수치적 미분 ## 개요 수치적 미분(Numerical Differentiation)은 함수의 해석적 도함수를 구하기 어려운 경우, 또는 함수의 형태가 명시적으로 주어지지 않고 단지 이산적인 데이터 점는 수치해석의 핵심 분야 중 하나로,학, 공학, 컴퓨터 시뮬레이션, 다양한 분야에서 널리 활용됩니다. 수치적 미분은 미분의 정의를 기반으로 하며, 주로...
검색 결과
"CDO"에 대한 검색 결과 (총 142개)
# 명시적 방법 ## 개요 **명시적 방법**(Explicit Method)은 수치해석에서 편미분방정식(PDE, Partial Differential Equation)을 시간에 따라 수치적으로 해를 구하는 기법 중 하나로, 미래 시간 단계의 해를 현재 또는 과거의 정보만을 사용하여 **직접 계산**할 수 있는 방법을 말한다. 이 방법은 계산 구조가 간단...
# 다중 선형 회귀 다중 선형 회귀(Multiple Linear Regression)는 하나의 종속 변수(dependent variable)와 두 개 이상의 독립 변수(independent variables) 간의 선형 관계를 모델링하는 통계적 기법이다. 머신러닝과 통계학에서 널리 사용되며, 특히 수치 예측 문제(regression problems)에서 ...
# CFD ## 개요 CFD는 일반적으로 **Computational Fluid Dynamics**(전산유체역학)를 의미하는 약자로, 유체(액체 또는 기체)의 흐름, 열전달, 화학 반응 및 관련된 물리적 현상을 수치 해석적으로 시뮬레이션하는 기술입니다. 이는 공학, 물리학, 환경 과학, 생물의학 등 다양한 분야에서 널리 활용되며, 실제 실험보다 비용과 ...
# 그레이 레벨 공동 발생 행렬 ## 개요 **그레이 레벨 공동 발생 행렬**(Gray-Level Co-occurrence Matrix, 이하 GLCM)은 디지털 이미지의 **텍스처 특성**을 정량적으로 분석하기 위한 대표적인 통계적 기법입니다. 이 기법은 픽셀 간의 회색조 값(그레이 레벨)의 공간적 관계를 행렬 형태로 표현함으로써, 이미지의 거칠기, ...
# 입자 군집 최적화 ## 개요 **입자 군집 최적화**(Particle Swarm Optimization, PSO)는 1995년 제임스 케네디(James Kennedy)와 러셀 유버트(Russell Eberhart)에 의해 제안된 **메타휴리스틱 최적화 알고리즘**으로, 생물의 군집 행동(예: 새 떼의 비행, 물고기 떼의 이동)을 모방하여 최적해를 탐...
# 안정성 분석 ## 개요 **안정 분석**(Stability Analysis) 제어공학에서 동적 시스템의 응답이 시간이 지남에 따라 어떻게 변화하는지를 평가하는 핵심적인 과정이다. 시스템이 외란이나 초기 조건 변화에 대해 일정한 상태로 수렴하는지를 판단함으로써, 제어 시스템 설계의 기본적인 전제 조건을 충족하는지 여부를 확인한다. 안정성은 시스템의 신...
# 포물선 ## 개요 포물선(抛物線, Parabola)은 이곡선의 한류로, 평면상에서 한 고정된 점(초점, Focus)과 한 고정된 직선(준선, Directrix)까지의 거리가 항상 같은 점들의 자취로 정의된다. 기하학적으로 매우 중요한 곡선이며, 물리학, 공학, 천문학 등 다양한 분야에서 응용된다. 특히, 중력이 작용하는 환경에서 물체를 던졌을 때의 ...
# 회귀 계수 회귀 계수(Regression Coefficient)는 회귀분석에서 독립변수(설명변수가 종속변(반응변수에 미치는 영향의 크기와 방을 나타내는 통계량이다. 회귀 계수는귀 모형의심 요소로, 데이터 기반으로 변수 간의 관계를 정량적으로 해석하고 예측하는 데 핵심적인 역할을 한다. 본 문서에서는 회귀 계수의 정의, 종류, 해석 방법, 추정 방식, ...
# 기술 진보 ##요 기술 진보(技術進步, Technological Progress)는 경제 성장의 핵심 동력 중 하나로, 생산 과정에서 동일한 자원을 사용하더라도 더 많은 산출물을 얻을 수 있게 해주는 생산성의 향상을 의미한다. 거시경제학에서 기술 진보는 장기적인 경제 성장률을 결정짓는 가장 중요한 요인 중 하나로 간주되며, 자본 축적과 인구 증가 외...
# 특잇값 분해 **특잇값 분해**(Singular Value Decomposition, S)는 선형수학에서 행렬을 세 개의별한 행렬로 분해하는 기법으로, 데이터 과학, 기계 학습, 신호 처리, 이미지 압축 등 다양한 분야에서 핵심적인 역할을 하는 수학적 도구이다. 임의의 실수 또는 복소수 행렬에 대해 적용할 수 있으며, 행렬의 구조를 명확히 이해하고 차...
# 특성방정식 ## 개요 **특성정식**(Characteristic Equation)은 선대수학에서 정방행렬(사각행렬)의 고값(Eigenvalue을 구하기 위해 사용 핵심적인 개념이다. 주어진 정방행렬 $ A $에 대해, 고유값은렬의 선형 변에서 방향이 변 않는 벡터(유벡터)에응하는 스칼 값으로 정의며, 이를 구하는 과정에서 특성방정식이 등한다. 특성정...
# 주성분 분석 개요 **성분 분석**( Component Analysis, PCA은 고차원 데이터를 저차원으로 효과적으로 축소하면서도 데이터의 주요 정보를 최대한 보존하는 **선형 차원 축소 기법**이다. PCA는 머신러닝, 통계학 데이터 시각화, 패턴식 등 다양한 분야에서 널리 사용되며 특히 데이터의 복잡성을 줄이고 노이즈를 제거하며 시각화를 용이...
# Space Vector PWM **Space Vector Pulse Width Mod**(SVPWM, 공간벡터 펄스폭 변조)는 전력전자 기술에서 인버터를 제어하여 정현파에 가까운 출력 전압을 생성하는 데 널리 사용되는 고급 PWM 기법입니다. 특히 삼상 인버터를 기반으로 한 모터 구동, 전력변환장치, 그리고 재생 가능 에너지 시스템에서 효율적인 전압 ...
# 모듈러 연산 **모듈러 연산**(Mod Arithmetic)은 정수론 핵심 개념 중로, 주어진수를 특정한(모듈러)로 나눈 나머지를 다루는 산술 체계입니다. 이 연산은 수학뿐 아니라 컴퓨터 과학, 암호학, 프로그래밍 등 다양한 분야 널리 활용되며, 특히 **시계 연산**(clock arithmetic)으로 비유되곤 합니다. 예를 들어, 12시간 시계에서...
# 다중 정밀도 산술 연산 다중 정도 산술 연산(Multiplerecision Arithmetic), 또는 고정밀도술 연산은에서 표준 정밀(예: 2비트 또는 64비트 부소수점)로 표현할 수 없는 매우 큰 수 또는 매우 높은 정밀도를 요구하는 수치를 다루기 위한 산술 방법이다. 이는 암호학, 수치해석, 대수계산, 과학 시뮬레이션 등 정밀한 계산이 필수적인 ...
# 선형 연립방정 선형 연립방정식( System of Equations)은 여러 개의 선형 방정식이 동시에 성립해야 하는 조건을 나타내는학적 구조로, 선형대수학의 핵심 주제 중 하나입니다. 이는 과학, 공학, 경제학, 컴퓨터 과학 등 다양한 분에서 현실 세계의 문제를 모델링하고 해를 구하는 데 널리 사용됩니다. 본 문서에서는 선형 연립방정식의 정의 표현 ...
# 계층적 소프맥스 ## 개요 **층적 소프맥스**(Hierarchicalmax)는 자연처리(NLP) 대용량 어휘(vocabulary)을룰 때 발생하는산 비용 문제를 해결하기 위해 제된 기술입니다 특히 언어 모델, 단어 임베딩(예: Word2Vec), 기계 번역 등에서 출력층의 소프트맥스 계산이 단어 사전의 크기에 비례하여 매우 비효율적이라는 문제가 있...
# 주파수 응답법 ## 개요 **주파 응답법**( Response Method)은 제어공학에서 시스의 동적 특성을 주파수 영역에서 분석하고 제어 설계하는 데되는 핵심적인 기법. 이 방법은스템에 정현파(sinusoidal 입력을 가했을 때, 출력 정적 상태에달한 후의 진폭 비과 위상 차를 주파수의로 표현함으로 시스템의 특성을악한다. 주수 응답법은로 선형 ...
# 적분 근사 ## 개요 적분 근사(Numerical Integration)는 해석적으로 정적분을 계산하기 어려운 함수에 대해, 수치적 방법을 사용하여 그 값을 근사적으로 구하는 기법을 의미한다. 수치적분은 공학, 물리학,계학, 컴퓨터 과학 등 다양한 분야에서 널리 활용되며, 특히 해석적 해를 구할 수 없는 복잡한 함수나 실험 데이터 기반의 함수에 대해...