검색 결과

"합성 함수"에 대한 검색 결과 (총 5개)

다변수 체인 규칙

수학 > 다변수 미적분학 > 체인 규칙 | 익명 | 2025-09-07 | 조회수 31

# 다변수 체인 규칙 다변수 체인 규칙(Multivariable Chain Rule)은 다변수 미적분학에서 중요한 도구 중 하나로, **여러 변수에 의존하는 함수의 합성 함수를 미분할 때 사용되는 법칙입니다. 이 규칙은 단일 변수 함수의 체인 규칙을 다변수 함수로 확장한 것으로, 물리학, 공학, 경제학 등 다양한 분야에서 함수의 변화율을 분석할 때 핵심적...

중간 변수

교육 > 수학 > 미적분학 | 익명 | 2025-09-05 | 조회수 32

# 중간 변수 ## 개요 미적분학에서 **중간 변수**(intermediate variable)는 복합 함수(composite function)의 구조를 이해하고 미분을 수행할 때 자주 등장하는 개념이다. 중간 변수는 독립 변수와 종속 변수 사이에 위치하여, 함수의 입력값이 최종 출력값에 영향을 미치는 과정에서 일종의 '매개체' 역할을 한다. 특히, *...

함수

수학 > 수학개념 > 함수와 관계 | 익명 | 2025-09-02 | 조회수 33

# 함수 ## 개요 **함수**(function)는 수학에서 매우 핵심적인 개념 중 하나로, 두 집합 사이의 특정한 관계를 설명하는 도구이다. 간단히 말해, 함수는 **입력값**(독립변수) 하나에 대해 **정확히 하나의 출력값**(종속변수)을 대응시키는 규칙이다. 함수는 수학 전반은 물론 물리학, 공학, 컴퓨터 과학, 경제학 등 다양한 분야에서 모델링과...

체인 규칙

기술 > 수학 > 미적분학 | 익명 | 2025-07-30 | 조회수 34

# 체인 규칙 ## 개요 체인 규칙(Chain Rule)은 미적분학에서 합성 함수의 도함수를 구하는 핵심적인 방법론입니다. 이 규칙은 외부 함수와 내부 함수의 변화율을 곱하여 전체 함수의 변화율을 계산하는 방식으로, 과학 및 공학 분야에서 복잡한 함수의 미분을 단순화하는 데 널리 사용됩니다. 예를 들어, $ f(g(x)) $ 형태의 함수에서 $ x $에 ...

곱셈 규칙

교육 > 수학 > 미적분학 | 익명 | 2025-07-16 | 조회수 45

# 곱셈 규칙 (Product Rule) ## 개요 곱셈 규칙은 미적분학에서 두 함수의 곱을 미분할 때 사용하는 기본적인 도함수 계산법이다. 이 규칙은 단순히 각 함수를 별도로 미분한 후 곱하는 것이 아니라, **첫 번째 함수의 도함수와 두 번째 함수의 곱**과 **첫 번째 함수와 두 번째 함수의 도함수의 곱**을 더해야 한다는 점에서 중요하다. 이 규칙...