# N-그램## 개요 **N-그램**(N-gram)은어처리(Natural Language Processing, NLP) 분야에서 언어 모델(Language Modeling)에리 사용되는 기초적인 통계적 기법이다. N-램은 연속 N개의 아이템(item)으로 구성된 부분열을 의미하며, 언어 처리에서는 주로 연속된 N개 단어(word) 또는 음소(phoneme...
검색 결과
"차수"에 대한 검색 결과 (총 22개)
# 편미분방정식 편미분방정식artial Differential Equation, PDE) 두 개 이상의 독립 변수를는 함수와 그 함수의 편미분들 사이의 관계를 나타내는 수학적 방정입니다. 이는 자연과학, 공학, 경제학 등 다양한 분야에서 물리적 현상을 모델링하고 분석하는 데 핵심적인 도구로 사용되며, 특히 공간과 시간에 따라 변화하는 현상(예: 열전도, ...
# 완전제곱식 ## 개요 **완전제식**(完全平方式, Perfect Trinomial)은 대수학 자주 등장하는 특수 다항식의 일종으로, 어떤 이항식의 제곱으로 표현할 수 있는 삼항식을 의미한다. 즉, 두 항의 합 또는 차를 제곱한 결과로 나타나는 다항식이다. 완전제곱식은 인수분해, 방정식 풀이, 제곱근 계산, 이차함수의 꼭짓점 찾기 등 다양한 수학적 응...
# 편미분방정식 ## 개요 편미방정식(Partial Differential Equation,DE)은 두 개 이상의립 변수를 갖는와 그 함수의 **편미분**(partial derivative)들 사이의 관계를 나타내는 수학적 방정식입니다. 일반 미분방정식(ODE)이 하나의 독립 변수(예: 시간)에 대한 함수의 도함수를 다룬다면, 편미분방정식은 공간과 시간...
# 다항식 커널 ## 개요 다항식널(Polynomial Kernel)은 **신러닝**, 특히 **서포트 벡터 머신**(Support Vector Machine, SVM)과 같은 커널 기반 알고리즘에서 널리 사용되는 비선형 커널 함수 하나입니다. 이 커은 입력 데이터 간의 유사도를 고차원 공간에서 효과적으로 계산함으로써, 선형적으로 분리되지 않는 복잡한 ...
# 뉴턴 방법 ##요 **뉴턴 방법**(Newton Method), 또는 **뉴턴-랍슨 방법**(Newton-Raphson Method)은 비선형 방정식의 근을 수치적으로 근사하는 데 사용되는 강력한 반복 최적화 알고리즘. 이 방법은 미분 가능한 함수에 대해 초기 추정값에서 출발하여 접선을 이용해 점차 정확한 해에 수렴하도록 설계되어 있으며, 특히 수치...
# SVM (서포트 벡터 머신) 서포트 벡터 머신(Support Vector Machine, SVM은 머신러닝 분에서 널리 사용되는 지도 학습 기반의 **분류 알고리즘**으로, 주로 이진 분류 문제에 사용되지만 다중 클래스 분류에도 확장 가능하다. SVM은 데이터 포인트를 고차원 공간으로 매핑하여 최적의 경계선(hyperplane)을 찾아 서로 다른 클래...
# 이차 인수 ## 개요 이차 인수(因數, Quadratic Factor는 **이차식**(2차 다항식)으로 구성된 인수를 의미하며, 대수학에서 다항식의 인수분해 과정에서 중요한 역할을 한다. 일반적으로 이차 인수는 $ ax^2 + bx + c $ 형태의 다항식으로 표현되며, 여기서 $ a \neq 0 $이고, $ a, b, c $는 실수 또는 복소수 계...
# 상미분방정식 ## 개요 상분방정식(微分方程式, Ordinary Differential Equation, ODE)은 하나의 독립 변수를 가진 함수와 함수의 도함수 사이의 관계를 나타내는 미분방정식입니다. 이는 물리학, 공학, 생물학, 경제학 등 다양한 과학 및 공학 분야에서 자연 현상이나 시스템의 동역학을 모델링하는 데 핵심적으로 사용됩니다. 상미분방...
# 고계 도함수 ## 개요 고계 도함수(higher-order derivatives)는 함수의 도함수를 다시 미분하여 얻어지는 도함수를 말한다. 가장 기본적인 도함수인 **1계 도함수**(first derivative)는 함수의 순간 변화율을 나타내며, 이 도함수를 다시 미분하면 **2계 도함수**(second derivative), 또 이를 미분하면 ...
# 수직 점근선 ## 개요 수직 점근선(vertical asymptote)은 함수의프가 특정 수직에 무한히까워지면서 그을 지나지 않는 현상을 말. 수직 점선은 함수가 정의되지 않거나 무한대로 발산하는 점에서 발생하며, 주로 유리함수, 로그함수, 삼각함수 등의 함수에서 관찰된다. 수직 점근선은 함수의 극한 성질을 이해하고, 그래프의 형태를 분석하는 데 중...
# 수평 점근선 수평 점근선(水平漸近線, Horizontal Asymptote)은 함수의 그래프가 독립변수(보통 $ x $)가 양의 무한대($ +\infty) 또는 음의 무한대($ -\infty $)로 갈 때, 특정한 수평선에 점점 가까워지는 경향을 보일 때 존재하는 직선이다. 이 개념은 미적분학, 특히 함수의 극한과 그래프 해석에서 중요한 역할을 하며,...
# 편미분방정식 ## 개요 편미분방정식(偏微分方程式, Partial Differential Equation, 이하 PDE)은 개 이상의 독립 변수를 가지는 함수와 그 함수의 **편미분**(partial derivative)들 사이의 관계를 나타내는 방정식이다. 이는 물리학, 공학, 경제학, 생물학 등 다양한 분야에서 자연 현상을 수학적으로 모델링하는 데...
# 미분방정식 미분방정식(Differential Equation은 하나 이상의 변수에 대한 함수와 그 함수의 도함수(미분)가 포함된 방정식을 의미합니다. 이 자연과학, 공학, 경제학, 생물학 등 분야에서 시스템의 동적 변화를 모델링하는 데 핵심적인 도구로 사용됩니다. 미분방정식을 통해 물체의 운동, 열의 전도, 전기 회로의 거동, 인구 성장, 감염병 확산...
# n-그램 모델## 개요 **n-그램 모델**(n-gram model)은 자연어 처리(Natural Language Processing NLP) 분에서 언어의 확률적 구조를 모링하기 위해 널리 사용되는 통계 기반 언어 모델이다. 이 모델은 주어진 단어 시퀀스에서 다음 단어가 등장할 확률을 이전의 *n-1*개 단어를 기반으로 예측하는 방식을 취한다. n-...
# Smoothing ## 개요 **Smoothing**(스무딩)은 데이터 과학 및 통계학에서 잡음(noise)을 줄이고 데이터의 일반적인 패턴이나 추세를 더 명확하게 드러내기 위해 사용되는 기법입니다. 특히 불규칙한 데이터나 불완전한 확률 분포 추정 시, 과적합(overfitting)을 방지하고 보다 일반화된 모델을 만들기 위해 중요하게 활용됩니다. ...
# 분수분해 ## 개요 분수분해(Partial Fraction Decomposition)는 복잡한 유리 함수를 더 단순한 유리 함수의 합으로 분해하는 대수적 기법입니다. 주로 적분 계산, 미분 방정식 풀이, 역라플라스 변환 등에서 활용되며, 유리 함수의 분모를 일차 또는 이차 인수로 분해한 뒤 분자를 적절히 조합하여 표현합니다. ## 분수분해의 정의와 ...
# 점근선 ## 개요 점근선(Asymptote)은 수학, 특히 미적분학에서 함수의 그래프가 무한대로 발산할 때 가까워지는 직선을 의미합니다. 이는 함수의 전반적인 행동을 이해하고 그래프를 정확하게 그리는 데 중요한 역할을 합니다. 점근선은 크게 **수직 점근선**, **수평 점근선**, **기울기 점근선**으로 구분되며, 각각의 조건과 활용 방법은 서로 ...
# 부분적분 ## 개요 부분적분(部分積分, Integration by Parts)은 미적분학에서 곱의 미분법을 기반으로 한 적분 기술로, 복잡한 함수의 곱을 포함하는 적분을 단순화하여 계산하는 데 사용됩니다. 이 방법은 특히 다항식과 삼각함수, 지수함수, 로그함수의 곱 형태로 주어진 적분 문제에 효과적입니다. 본 문서에서는 부분적분의 공식 유도, 적용 방...
# 잔차 제곱합 ## 개요 잔차 제곱합(Sum of Squared Residuals, SSR)은 **회귀 분석**에서 모델의 예측값과 실제 관측값 간의 차이를 정량적으로 평가하는 지표입니다. 이 값은 잔차(residual)를 제곱한 후 모든 관측치에 대해 합산한 것으로, 모델의 적합도를 판단하는 핵심 요소입니다. 잔차 제곱합이 작을수록 모델이 데이터에 잘...