# ast.NodeTransformer `ast.NodeTransformer`는 Python의 표준 라이브러리 `ast`(Abstract Syntax Tree, 추상 구문 트리) 모듈에 포함된 클래스로, 파이썬 코드를 파싱한 후 그 구조를 분석하고 **수정하거나 변환**하는 데 사용되는 강력한 도구입니다. 이 클래스는 코드 변환(code transform...
검색 결과
"이항"에 대한 검색 결과 (총 22개)
# CHI 제곱 검정 ## 개요 **CHI 제곱 검정**(Chi-Square Test, 카이제곱 검정)은 통계학에서 범주형 변수(categorical variable) 간의 독립성 또는 관찰된 빈도와 기대 빈도 간의 차이를 평가하기 위해 널리 사용되는 비모수적(non-parametric) 가설 검정 방법입니다. 이 검정은 영국의 통계학자 카를 피어슨(K...
# 표준오차 ## 개요 **표준오차**(Standard Error, SE)는 통계학에서 표본 통계량(예: 표본평균)이 모집단의 진짜 모수(예: 모평균)를 얼마나 정확하게 추정하는지를 나타내는 지표입니다. 즉, 표준오차는 **표본 통계량의 변동성**을 측정하며, 반복적으로 표본을 추출했을 때 그 통계량이 어느 정도의 분포를 갖는지를 설명합니다. 표준오차...
# ast 모듈 Python의 `ast` 모듈은 **추상 구문 트리**(Abstract Syntax Tree, AST)를 다루기 위한 표준 라이브러리입니다. 이 모듈을 사용하면 Python 코드를 파싱하여 그 구조를 트리 형태로 분석하고, 조작하거나 변환할 수 있습니다. `ast` 모듈은 정적 분석 도구, 코드 포맷터, 린터, 코드 생성기 등 다양한 프로...
# 표준 오차 ## 개요 **표준 오차**(Standard Error, SE)는 통계학에서 표본 통계량(예: 표본 평균)이 모집단의 실제 모수(예: 모평균)를 얼마나 정확하게 추정하는지를 나타내는 척도이다. 즉, 표본밀도**(precision)를 평가하는 데심적인 역할을 한다. 일반적으로 표준 오차가 작을수록 표본 통계량은 모수에 더 가깝게 일관되게 추...
# p-값 ## 개요 **p-값**(p-value, probability value)은 통계학에서 **가설검정**(hypothesis testing)의 핵심 개념 중 하나로, 귀무가설(null hypothesis)이 사실일 때 관측된 표본 데이터 또는 그보다 더 극단적인 결과가 나타날 확률을 의미한다. p-값은 데이터의 통계적 유의성을 판단하는 데 사용...
# UAM ## 개요 **UAM**(Urban Air Mobility, 도시 항공 모빌리티)는 도시 내 및 도시 간 이동 수단으로서 수직이착륙 전기항공기(eVTOL, electric Vertical Take-Off and Landing)를 활용하는 차세대 교통 시스템을 의미합니다. 지상 교통의 혼잡 문제를 해결하고, 빠르고 효율적인 이동을 가능하게 하기...
# AST (추상 구문 트리) ## 개요 **AST**(Abstract Syntax Tree, 추상 구문 트리)는 컴퓨터 과학, 특히프로그래밍 언어 처리**(Programming Language Processing)와 **컴파일러 설계** 분야 핵심적인 데이터 구조입니다. AST는 소스 코드의 문법적 구조를 **계층적이고 구조화된 트리 형태**로 표현하...
# 수치적 방법 ## 개요 수치적 방법(Numerical Methods)은 재무 모델링에서 해석적으로 정확한 해를 구하기 어려운 복잡한 수학적 문제를 근사적으로 해결하기 위한 계산 기법을 의미합니다. 재무 분야에서는 옵션 가격 결정, 리스크 측정, 포트폴리오 최적화, 현금흐름 예측 등 다양한 문제에 직면하게 되며, 이러한 문제들은 종종 비선형 방정식, ...
# 계층적 소프맥스 ## 개요 **층적 소프맥스**(Hierarchicalmax)는 자연처리(NLP) 대용량 어휘(vocabulary)을룰 때 발생하는산 비용 문제를 해결하기 위해 제된 기술입니다 특히 언어 모델, 단어 임베딩(예: Word2Vec), 기계 번역 등에서 출력층의 소프트맥스 계산이 단어 사전의 크기에 비례하여 매우 비효율적이라는 문제가 있...
# 관계 관계(Relation)는 집합론에서 개 이상의 객체 사이의 연결성을 수학적으로 정의한으로, 수학 전반에서 기초적인 도구로 사용된다. 특히 집합의 원소들 사이에 어떤 조건이나 규칙에 따라 연결이 이루어지는지를 형식 기술할 수 있으며, 함수, 순서, 동치 관계 등 다양한 수학 구조의 기반이 된다. 이 문서에서는 집합론에서의 '관계'의 정의, 종류, ...
# 확률적 모델링 ## 개요 **확률 모델링**(Probabilistic)은 불확실성과 랜성을 내재한 현상이나 시스템을 수학적으로 표현하고 분석하기 위한 통계학 및 확률론의 핵심 기법이다. 현실 세계의 많은 현상은 결정론적으로 예측하기 어려우며, 관측 오차, 자연스러운 변동성, 또는 정보의 부족 등으로 인해 확률적인 접근이 필요하다. 확률적 모델링은 이...
# 확률 ## 개요 **확률**(Probability)은 어떤 사건이 발생할 가능성을치적으로 표현한 개념으로, 통계학과 수학, 특히 확률론의 핵심 기초를 이룹니다. 현실 세계에서 불확실한 상황을 분석하고 예측하는 데 널리 활용되며, 과학, 공학, 경제, 의학, 인공지능 등 다양한 분야에서 중요한 도구로 사용됩니다. 확률은 일반적으로 0과 1 사이의 실...
# 대수적 표현 ## 개요 대수적 표현(代數的表現, Algebraic)은 수학 변수, 상수,산 기호를 이용하여 수량 사이의 관계를 기로 나타낸 식을 의미한다. 대수적 표현은 방정식, 부등식, 함수 등을 구성하는 기본 단위로, 수학 전반에서 광범위하게 사용된다. 특히 함수의 정의나 수식의 일반화 과정에서 핵심적인 역할을 한다. 대수적 표현은 단순한 계산...
분배법칙## 개요 분배법칙分配法則, Distributive Law은 수학, 기초대수학에서 매우 중요한 성 중 하나로, 덧셈과 곱셈의 관계를 설명하는 법칙입니다. 법칙은 수을 전개하거나 인분해할 때 핵심적인 역할을 하며, 초등학교 수학 처음 소개된 후 중등 및 고등 수까지 폭넓게 적용됩니다분배법칙 괄호 안의 항에 괄호 밖의 수를 곱할 때, 각 항에 개별적으...
# 지수족 형태 지수족(Exponential Family Form)는 통계학에서 중요한 확률분의 수학적 구로, 많은 일반적인 확률분포들이 이 형태로 표현될 수 있다. 지수족은 추정 이론, 베이즈 통계, 일반화선형모형(GLM), 정보 이론 등 다양한 통계적 분석에서 핵심적인 역할을 하며, 수학적 처리의 용이성과 이론적 아름다움을 동시에 갖춘 구조이다. 본 ...
# 완전제곱식 ## 개요 **완전제식**(完全平方式, Perfect Trinomial)은 대수학 자주 등장하는 특수 다항식의 일종으로, 어떤 이항식의 제곱으로 표현할 수 있는 삼항식을 의미한다. 즉, 두 항의 합 또는 차를 제곱한 결과로 나타나는 다항식이다. 완전제곱식은 인수분해, 방정식 풀이, 제곱근 계산, 이차함수의 꼭짓점 찾기 등 다양한 수학적 응...
# 동치관계 동치관계(同値關係, Equivalence Relation)는 수학, 특히 **일반 위상수학**과 **집합론**, **대수학** 등 다양한 분야에서 핵심적인 개념 중 하나이다. 이는 집합 원소들 사이에 어떤 기준에 따라 "서로 같다고 볼 수 있는" 관계를 형식적으로 정의하는 도구로, 수학적 구조를 이해하고 분류하는 데 중요한 역할을 한다. 위상...
# 집합 연산 집합 연산(Set Operations)은 수, 특히 집합론(Set)에서 두 개의 집합을 조합하거나 비교하여 새로운 집합을 생성하는 기본적인 방법을 의미합니다. 집합은 서로 다른 원소(element)의 모임으로 정의되며, 이소들 사이의계를 분석하고작하기 위해 다양한 연산이 사용됩니다. 집합 연산은 수학 전반뿐 아니라 컴퓨터 과학, 논리학, 통...
# 확률 분포## 개요 **확률 분포**(Probability Distribution는 확률변의 가능한 값들과 각 값이 발생할 확률을 체계적으로 설명하는 수학적 함수이다. 통계학과 확률론의 핵심 개념 중 하나, 데이터의 특과 불확실성을량적으로 분석 예측하는 데 필수적인 도구이다. 확률 분포는 실험, 관측, 또는 이론적 모델에서 얻은 결과의 확률적 행동을 ...