# 딥러닝 기반 방법 ## 개요 딥러닝 기반 방법은 머신러닝의 한 분야로, 인공신경망(Artificial Neural Networks, ANN)의 다층 구조를 활용하여 데이터에서 복잡한 패턴과 특징을 자동으로 학습하는 기술입니다. 특히 깊은 네트워크 구조(즉, 여러 개의 은닉층을 가진 구조)를 사용함으로써 기존의 머신러닝 기법들이 해결하기 어려웠던 고차...
검색 결과
"선형 함수"에 대한 검색 결과 (총 13개)
# tanh ## 개요 **tanh**(하이퍼볼릭 탄젠트, Hyperbolic Tangent)는 인공신경망에서 널리 사용되는 **비선형 활성화 함수** 중 하나입니다. 수학적으로는 입력값에 대한 하이퍼볼릭 탄젠트 값을 출력하며, 출력 범위가 **-1에서 1 사이**로 제한된다는 특징을 가지고 있습니다. 이는 신경망의 학습 안정성과 수렴 속도에 긍정적인 ...
# 포물선 ## 개요 포물선(抛物線, Parabola)은 이곡선의 한류로, 평면상에서 한 고정된 점(초점, Focus)과 한 고정된 직선(준선, Directrix)까지의 거리가 항상 같은 점들의 자취로 정의된다. 기하학적으로 매우 중요한 곡선이며, 물리학, 공학, 천문학 등 다양한 분야에서 응용된다. 특히, 중력이 작용하는 환경에서 물체를 던졌을 때의 ...
# 선형 탐색 선형 탐색(Linear Search)은치 최적화 분야에서되는 기본적인 최적화 기 중 하나로, 주로 **기기 하강법**(Gradient Descent)과 같은 반복적 최적화 알고리의 핵심 구성소로 활용된다. 이 기법은 주어진 탐색 방향에서 목적 함수를 최소화하는 최적의 스텝 사이즈(step size) 또는 **학습률**(learning rat...
# 그래프 표현 함수의 **그래프 표현**(Graphical Representation)은 함수의 정의역과 공역 사이의 관계를 시각적으로 나타내는 방법으로, 미적분학에서 매우 중요한 도구 중 하나입니다. 함수의 그래프를 통해 함수의 성질, 변화 양상, 극값, 연속성, 미분 가능성 등을 직관적으로 파악할 수 있으며, 복잡한 수학적 개념을 이해하고 설명하는 ...
미분가능미분가능(differentiable)은 미분학에서 매우 개념으로, 함수의 특정 지에서 접선이 존재하고 그 지점에서의 기울기를 잘 정의할 수 있는 성질을 의미한다. 이는 함수의 국소적인율을 분석하는 데 핵심적인 역할 하며, 연성과 함께 미적분학의 기초를 형성한다. 미분가능성은 물리학, 공학, 경제학 등 다양한 분야에서 함수의 행동을 예측하고 최적화 문...
# MD5 ## 개요 MD5(Message-Digest Algorithm )는 199년 로널드븐(Ronald Rivest에 의해 개발된 암호화 해시 함수로, 임의 길이의 입력 데이터를 고정된 128트(16바이트) 길이의 해시 값(다제스트)으로 변환하는리즘입니다.5는 주로 데이터 무결성 검사, 체크섬 생성, 비밀번호 저장 등에 사용되어 왔으며, 과거에는 ...
# 치역 ## 개요 **치역**(range)은 함수 출력값, 즉에 의해 정의역의 원소들이 대응되는 값들의 집합을 의미한다. 수학, 특히 미적분학에서 치은 함수의 행동과 성질을 분석하는 데 핵심적인 개념 중 하나이다. 함수 $ f: A \to B $가 주어졌을 때, 정의역 $ A $의 각 원소 $ x $에 대해 $ f(x) $의 값이 존재하며, 이러한 모...
# 체인 규칙 ## 개요 **체인 규칙**(Chain Rule)은 미적분학에서합성함수**(composite function)의 도함수를 구하는 데 사용되는 핵심적인 미분 법칙이다. 두 개 이상의 함수가 합성된 형태, 즉 $ y = f(g(x)) $ 와 같은 함수의 변화율을 계산할 때 매우 유용하며, 고등 수학 및 응용 과학 전반에서 빈번히 사용된다. 체...
# 편미분방정식 ## 개요 편미분방정식(偏微分方程式, Partial Differential Equation, 이하 PDE)은 개 이상의 독립 변수를 가지는 함수와 그 함수의 **편미분**(partial derivative)들 사이의 관계를 나타내는 방정식이다. 이는 물리학, 공학, 경제학, 생물학 등 다양한 분야에서 자연 현상을 수학적으로 모델링하는 데...
# 함수 ## 개요 **함수**(function)는 수학에서 매우 핵심적인 개념 중 하나로, 두 집합 사이의 특정한 관계를 설명하는 도구이다. 간단히 말해, 함수는 **입력값**(독립변수) 하나에 대해 **정확히 하나의 출력값**(종속변수)을 대응시키는 규칙이다. 함수는 수학 전반은 물론 물리학, 공학, 컴퓨터 과학, 경제학 등 다양한 분야에서 모델링과...
# 치역 ## 개요 **치역**(range)은 수학, 특히 함수와 기하학에서 중요한 개념으로, 함수가 **정의역**(domain)의 입력값에 대해 실제로 출력하는 값들의 집합을 의미합니다. 치역은 **공역**(codomain)과 구분되어야 하며, 공역은 함수가 가질 수 있는 모든 가능한 출력값의 집합이지만 치역은 실제로 함수에 의해 "달성되는" 값들만 포...
# 함수 ## 개요 함수는 수학에서 중요한 개념으로, 하나의 입력 값에 대해 단일 출력 값을 매핑하는 규칙을 의미합니다. 이는 다양한 분야에서 모델링과 예측을 가능하게 하며, 대수학, 미적분학, 과학 등에서 핵심적인 역할을 합니다. 본 문서에서는 함수의 정의, 종류, 성질, 실생활 적용 등을 상세히 설명합니다. --- ## 정의 함수는 **도메인**(...