# 목적 함수 ## 개요 목적 함수(objective function)는 데이터과학과 최적화 문제에서 핵심적인 역할을 하는 수학적 함수로, 모델의 성능을 평가하거나 최적의 해를 도출하기 위해 최소화 또는 최대화하는 대상입니다. 기계학습에서는 모델의 예측 오차를 줄이는 것을 목표로 하며, 수학적 최적화에서는 특정 조건 하에서 최적의 해를 찾는 데 사용됩니다...
검색 결과
"수렴"에 대한 검색 결과 (총 123개)
```markdown # GAN (Generative Adversarial Network) ## 개요 GAN(Generative Adversarial Network)은 2014년 Ian Goodfellow 등에 의해 제안된 딥러닝 모델로, 생성자(Generator)와 판별자(Discriminator)의 경쟁적 학습을 통해 데이터를 생성합니다. 주로 이미지...
# 교육 분야의 협업 학습 도구 ## 개요 교육 분야에서 **협업 학습 도구**(Collaborative Learning Tools)는 학생과 교사 간의 협력적 학습을 촉진하기 위한 기술 및 플랫폼을 의미합니다. 이 도구들은 디지털 환경에서 실시간 소통, 문서 공유, 프로젝트 공동 작업 등을 지원하며, 전통적인 교육 방식에 비해 유연성과 참여도를 ...
# 백프로파게이션 (Backpropagation) ## 개요 백프로파게이션(Backpropagation)은 인공 신경망(Artificial Neural Network, ANN)을 학습시키는 데 사용되는 주요 알고리즘 중 하나입니다. 이 기법은 **오차 역전파**라고도 불리며, 네트워크의 출력과 실제 타겟 값 사이의 오차를 최소화하기 위해 가중치와 편향을 ...
# 컨볼루셔널 네트워크 (CNN) ## 개요 컨볼루셔널 네트워크(Convoluted Neural Network, CNN)는 인공지능(AI) 분야에서 이미지 처리 및 시각적 데이터 분석에 특화된 딥러닝 기법입니다. 1980년대 후반부터 발전해온 이 기술은 컴퓨터 비전의 혁신을 주도하며, 객체 탐지, 이미지 분류, 패턴 인식 등 다양한 응용 분야에서 핵심 역...
# 곱셈 규칙 (Product Rule) ## 개요 곱셈 규칙은 미적분학에서 두 함수의 곱을 미분할 때 사용하는 기본적인 도함수 계산법이다. 이 규칙은 단순히 각 함수를 별도로 미분한 후 곱하는 것이 아니라, **첫 번째 함수의 도함수와 두 번째 함수의 곱**과 **첫 번째 함수와 두 번째 함수의 도함수의 곱**을 더해야 한다는 점에서 중요하다. 이 규칙...
# 극한 ## 개요 극한(limit)은 수학에서 함수의 행동을 분석하는 데 핵심적인 개념으로, 특정 점에 가까운 입력값에 대한 출력값의 추세를 나타냅니다. 미적분학의 기초가 되며, 도함수와 적분의 정의에 필수적이며, 물리학, 공학 등 다양한 분야에서 응용됩니다. 극한은 수렴과 발산을 이해하는 데 중요한 역할을 하며, 함수의 연속성, 미분 가능성 등...
# 함수 ## 개요 함수는 수학에서 중요한 개념으로, 하나의 입력 값에 대해 단일 출력 값을 매핑하는 규칙을 의미합니다. 이는 다양한 분야에서 모델링과 예측을 가능하게 하며, 대수학, 미적분학, 과학 등에서 핵심적인 역할을 합니다. 본 문서에서는 함수의 정의, 종류, 성질, 실생활 적용 등을 상세히 설명합니다. --- ## 정의 함수는 **도메인**(...
# 미적분학 ## 개요 미적분학(calculus)은 수학의 중요한 분야로, 변화와 누적을 연구하는 학문이다. 17세기에 뉴턴(Isaac Newton)과 라이프니츠(Gottfried Wilhelm Leibniz)에 의해 체계화된 이 분야는 물리학, 공학, 경제학 등 다양한 과학 분야에서 필수적인 도구로 사용된다. 미적분학은 **미분**과 **적분** 두 가...
# 활성화 함수 ## 개요/소개 활성화 함수는 인공신경망(ANN)에서 입력 신호를 처리하여 출력을 생성하는 데 사용되는 핵심 요소입니다. 이 함수는 신경망이 비선형 관계를 학습할 수 있도록 하며, 단순한 선형 모델로는 해결 불가능한 복잡한 문제(예: 이미지 인식, 자연어 처리)를 해결하는 데 기여합니다. 활성화 함수의 선택은 네트워크 성능, 수렴 속도...
# 시그모이드 함수 ## 개요 시그모이드 함수(Sigmoid Function)는 **0에서 1 사이의 값을 출력**하는 비선형 활성화 함수로, 인공지능(AI) 및 머신러닝(ML) 분야에서 널리 사용됩니다. 이 함수는 로지스틱 회귀(Logistic Regression), 신경망(Neural Network) 등에서 **확률을 예측**하거나 **이진 분류(Bi...
# 장기 의존성 문제 ## 개요 장기 의존성 문제는 시계열 데이터나 순차적 정보를 처리하는 인공지능 모델이, 오랜 시간 간격을 두고 발생한 사건이나 특징을 효과적으로 인식하고 반영하는 데 어려움을 겪는 현상을 의미합니다. 이는 자연어 처리(NLP), 음성 인식, 시계열 예측 등 다양한 분야에서 중요한 기술적 과제로 작용하며, 모델의 성능과 정확도에 직접적...
# 미니 배치 경사 하강법 ## 개요 미니 배치 경사 하강법(Mini-Batch Gradient Descent)은 기계 학습에서 파라미터 최적화를 위한 주요 알고리즘 중 하나로, **배치 경사 하강법(Batch Gradient Descent)**과 **스토캐스틱 경사 하강법(Stochastic Gradient Descent)**의 중간 형태이다. 이 방법...
# K-평균 ## 개요 K-평균(K-Means)은 데이터를 **군집화(Clustering)**하는 대표적인 비지도학습(unsupervised learning) 알고리즘입니다. 주어진 데이터 포인트를 사전에 정의된 **K개의 군집**으로 분류하여, 각 군집 내 데이터 간 유사도를 최대화하고, 다른 군집과의 차이를 최소화하는 방식으로 작동합니다. 이 ...
# Q-값 ## 개요 Q-값(Q-value)은 강화학습(Reinforcement Learning, RL)에서 중요한 개념으로, 특정 상태(state)에서 특정 행동(action)을 선택했을 때 기대할 수 있는 누적 보상(reward)을 나타냅니다. 이는 에이전트(agent)가 최적의 정책(policy)을 학습하는 데 필수적인 역할을 하며, Q-학습...
# 하이퍼파라메터 ## 개요/소개 하이퍼파라메터(Hyperparameter)는 머신러닝 모델의 학습 과정에서 **사전에 설정되는 조절 매개변수**로, 모델의 성능과 수렴 속도에 직접적인 영향을 미칩니다. 이는 학습 알고리즘 내부에서 자동으로 계산되지 않으며, 개발자가 직접 정의해야 하는 파라메터입니다. 예를 들어, 신경망의 경우 레이어 수, 노드 수, 활...
# 경사 하강법 ## 개요 경사 하강법(Gradient Descent)은 머신러닝에서 모델의 파라미터를 최적화하기 위한 기본적인 최적화 알고리즘입니다. 이 방법은 **비용 함수(cost function)**의 기울기(gradient)를 계산하여, 매개변수를 반복적으로 조정해 최소값을 찾는 과정입니다. 경사 하강법은 신경망, 회귀 모델 등 다양한 학습 알고...
# 배치 크기 ## 개요 배치 크기(Batch Size)는 머신러닝 모델 훈련 중 **데이터 샘플을 한 번에 처리하는 수량**을 의미합니다. 이 값은 경사 하강법(Gradient Descent)과 같은 최적화 알고리즘에서 매개변수 업데이트의 주기를 결정하며, 모델 학습 속도, 메모리 사용량, 수렴 성능에 직접적인 영향을 미칩니다. 배치 크기는 일반...
# 학습률 ## 개요 학습률(Learning Rate)은 기계학습 모델이 손실 함수를 최소화하기 위해 파라미터를 업데이트할 때의 변화량을 결정하는 **핵심 하이퍼파라미터**입니다. 이 값은 모델의 학습 속도와 수렴 성능에 직접적인 영향을 미치며, 적절한 설정 없이는 과적합(overfitting)이나 수렴 실패(convergence failure)로 이어질...
# 할인 인자 (Discount Factor) ## 개요/소개 할인 인자(Discount Factor)는 **미래의 가치를 현재에 비례하여 감소시켜 계산하는 수학적 개념**으로, 금융, 데이터 과학, 강화 학습 등 다양한 분야에서 활용됩니다. 주로 **시간에 따른 가치 변화**를 모델링하기 위해 사용되며, 특히 **장기적인 결과의 중요도를 조절**하는...