출력값 **값**(output value)은 수학에서 함수의 **종속변수**(dependent variable)에 해당하는 개념으로, 함수에 입력된 값(입력값 또는 독립변수)에 결정되는 결과값을 의미한다. 함수는 일종의 '규칙' 또는 '사상'으로, 하나 이상의 입력값을 받아 정해진 방식에 따라 하나의 출력값을 산출한다. 출력값은 함수의 핵심 구성 요소 중...
검색 결과
"성질"에 대한 검색 결과 (총 97개)
# L2 노름## 개요 **L2 노름L2 norm) 벡터 공간에서 벡터의 크기 또는 길이를 측정하는 방법 중 하나로, 선형수학, 기계학습, 신호, 수치해 등 다양한 분야에서 널리 사용되는 중요한 개념이다. L2 노름은 유클리드 노름(Euclidean norm)이라고도 하며, 일반적인 직관적인 '' 개념과 일한다. 이 문서에서는2 노름의의, 수학 표현, 성...
# 트레이트 () ## 개요 **트레이트**()는 객체지 프로그래밍과형 프로그래의 경계를나드는 고급 타입 시스템에서 중요한 개념으로, 특정 타입이 가져야 할 동작(메서드)이나 속성을 정의하는 추상적 인터페이스입니다. 트레이트는 단순한 인터페이스를 넘어서 재사용 가능한 코드 조각으로서의 기능도 수행하며, 다중 상속의 문제를 안전하게 해결하는 데 유용하게 ...
# 함수 ## 개요 **함수**(function)는 수학에서 매우 핵심적인 개념 중 하나로, 두 집합 사이의 특정한 관계를 설명하는 도구이다. 간단히 말해, 함수는 **입력값**(독립변수) 하나에 대해 **정확히 하나의 출력값**(종속변수)을 대응시키는 규칙이다. 함수는 수학 전반은 물론 물리학, 공학, 컴퓨터 과학, 경제학 등 다양한 분야에서 모델링과...
# SVD (특이값 분해) **SVD**(Singular Value Decomposition, 특이값 분해)는 선형대수학에서 행렬을 특정한 형태로 분해하는 기법으로, 수치해석, 데이터 과학, 기계학습, 신호 처리 등 다양한 분야에서 핵심적인 역할을 하는 수학적 도구입니다. SVD는 임의의 실수 또는 복소수 행렬을 세 개의 특수한 행렬의 곱으로 분해함으로써...
# 확률 분포## 개요 **확률 분포**(Probability Distribution는 확률변의 가능한 값들과 각 값이 발생할 확률을 체계적으로 설명하는 수학적 함수이다. 통계학과 확률론의 핵심 개념 중 하나, 데이터의 특과 불확실성을량적으로 분석 예측하는 데 필수적인 도구이다. 확률 분포는 실험, 관측, 또는 이론적 모델에서 얻은 결과의 확률적 행동을 ...
# 물리학 물리학(Physics)은 자연계의 법칙과 현상을 수학적 언어를 통해 설명하고 예측하는 자연과학의 한 분야이다. 물리학은 우주의 가장 근본적인 구성 요소인 물질, 에너지, 운동, 힘, 공간, 시간 등의 개념을 탐구하며, 이들의 상호작용을 이해하는 데 목적이 있다. 현대 과학 기술의 기초를 이루는 핵심 학문으로, 천문학, 화학, 생물학, 공학 등 ...
과학 계산 ## 개요 **과학 계산**(Scientific Computing)은 수학, 물리, 공학,물학 등 다양한 과 분야의 문제를 해결하기 위해 컴퓨터를 활용하는 학문 분야. 이는 복한 수학적 모을 수치적으로 해석하고, 실제 현상을 시뮬레이션하거나 예측하는 데 중심적인 역할을 한다. 과학 계산은 이론적 분석과 실험적 관찰에 더해 **제3의 과학 방법...
# 이론적 비용 이론적 비용량(Theoretical Specific Capacity)은 배터리 기술, 특히 리튬이온 배터리와 같은 2차 전지를 설계하고 평가하는 데 핵심적인 개념이다. 이는 특정 전극 물질이 가질 수 있는 최대의 전기적 저장 능력을 질량 단위(일반적으로 mAh/g, 밀리암페어시/그램)로 표현한 값으로, 배터리의 에너지 밀도를 결정하는 중요...
# 선형 최소 제곱법 ## 개요 선형 최 제곱법(Linear Least Squares Method)은 통계학 수치해석에서 널리 사용되는귀분석 기법으로, 관측된 데이터와 모델의 예측값 사이의 **잔차 제곱합**(Sum of Squared Residuals)을 최소화하여 모의 파라미터를 추정하는 방법입니다. 이 방법은 선 회귀 모델의 추정에 가장 기본적이면...
# 제곱근 ## 개요 제곱근은 수학에서 중요한 개념으로, 어떤 수를 제곱하여 원래의 수를 얻을 수 있는 수를 의미합니다. 예를 들어, 2는 4의 제곱근이 되며, 3은 9의 제곱근입니다. 이 문서에서는 제곱근의 정의, 성질, 계산 방법, 응용 분야 등을 체계적으로 설명하며, 고등학교 수학 수준의 이해를 돕기 위해 구성되었습니다. ## 제곱근의 정의 ###...
# 선형 연산 ## 개요 선형 연산(Linear Operation)은 데이터 과학과 분석 분야에서 핵심적인 수학적 도구로, 선형 대수학(Linear Algebra)의 기본 원리를 기반으로 합니다. 이 연산은 행렬, 벡터, 스칼라 등을 활용해 데이터의 구조를 변환하거나 패턴을 추출하는 데 사용되며, 머신러닝, 통계 분석, 최적화 문제 등 다양한 분야에 적용...
Okay, I to create a professional Korean document about "정적분" (Definite Integral) under the category of Calculus in Mathematics. Let me start by understanding the structure and requirements given. Fir...
# 함수 ## 개요 함수(function)는 수학, 특히 미적분학에서 핵심적인 개념으로, 두 집합 사이의 입력값과 출력값의 관계를 정의하는 규칙입니다. 미적분학에서는 함수의 변화율(미분)과 누적합(적분)을 분석함으로써 과학, 공학, 경제학 등 다양한 분야의 문제를 해결할 수 있습니다. 이 문서에서는 함수의 기본 정의, 특성, 종류, 미적분학에서의 활용을 ...
# 연속성 ## 개요 **연속성**(Continuity)은 미적분학에서 함수의 중요한 성질 중 하나로, 함수 그래프가 끊김 없이 매끄럽게 연결되어 있음을 의미합니다. 이 개념은 극한과 밀접하게 연관되어 있으며, 함수의 행동을 예측 가능하게 만드는 기초가 됩니다. 연속성은 수학적 분석뿐만 아니라 물리학, 공학, 경제학 등 다양한 분야에서 모델링에 필수적인 ...
Okay, I to write a professional wiki-style document in Korean about the Ordinary Least Squares (OLS) method under the category of Regression in Statistics. Let me start by outlining the structure base...
# 무한극한 ## 개요 무한극한(infinite limit)은 수학에서 함수의 극한이 유한한 값이 아닌 **무한대(∞)**로 발산하는 경우를 의미합니다. 이 개념은 미적분학에서 함수의 행동 분석, 점근선(漸近線) 탐구, 연속성 판단 등에 핵심적인 역할을 합니다. 무한극한은 수치적으로 정의된 극한이 아닌 **함수의 성질**을 나타내며, 이는 함수가 특정 값...
# 복합함수 ## 개요 복합함수(composite function)는 수학에서 두 함수를 결합하여 새로운 함수를 생성하는 방법이다. 이 개념은 미적분학, 해석학, 공학 등 다양한 분야에서 핵심적인 역할을 하며, 특히 복잡한 수식의 도함수 계산에 필수적이다. 복합함수는 하나의 함수의 결과를 다른 함수에 입력으로 사용하는 방식으로 정의되며, 이는 함수의...
# 극한 ## 개요 극한(limit)은 수학에서 함수의 행동을 분석하는 데 핵심적인 개념으로, 특정 점에 가까운 입력값에 대한 출력값의 추세를 나타냅니다. 미적분학의 기초가 되며, 도함수와 적분의 정의에 필수적이며, 물리학, 공학 등 다양한 분야에서 응용됩니다. 극한은 수렴과 발산을 이해하는 데 중요한 역할을 하며, 함수의 연속성, 미분 가능성 등...
# 미분법 ## 개요 미분법은 수학에서 함수의 변화율을 분석하는 기초적인 도구로, 미적분학의 핵심 주제 중 하나이다. 이는 특정 점에서의 순간 변화량(도함수)을 계산하여 함수의 성질을 탐구하는 방법으로, 물리학, 공학, 경제학 등 다양한 분야에서 응용된다. 미분법은 17세기 뉴턴과 라이프니츠에 의해 독립적으로 개발되었으며, 현대 수학의 기초를 형성하는 중...