# 회귀 분석## 개요 회귀 분석**( Analysis)은 통계학에서 두 이상의 변수 간의 관계를 모델링하고 분석하는 대표적인 기법이다 주로 하나의종속 변수**(응 변수, dependent variable와 하나 이상의독립 변수**(설 변수, independent variable 사이의 인과 관계 또는 상관 관를 수학적으로 표현하여, 독립 변수의 변화가 ...
검색 결과
"CDO"에 대한 검색 결과 (총 142개)
# MSR: 다중 스케일 Retinex 알고리즘## 개요 **MSRMulti-Scale Retinex)은 디털 영상 처리 분야에서 널리 사용되는 색 보정 및 명암 대비 향상 기법 중 하나로, 인간의각 시스템이 다양한 조명 조건 하에서도 색상과 밝기를 일관되게 인식하는 능력에 착안하여 개발된 **Retin 이론**을 기반으로 합니다. MSR은 특히 저조도,...
# Time-of-Flight ## 개요 **Time-of-FlightToF, 비행시간)는체와 센서 사이의 거리를 측정하기 위한 기술로, 빛이나 음파와 같은 신호가 발사되어 물체에 반된 후 수신 때까지의 **비행 시간**(Time of Flight)을 측정함으로써 거리를 계산하는 원리를 사용합니다. 특히 **컴퓨터비전**(Computer Vision) ...
# 전기회로 해석 전기회로 해석은 전자공학의 핵심 분야 중 하나로, 전기적소들(저항, 커패시터, 인덕터, 전원 등)이 연결된로의 전압 전류, 전력 물리량을 계산하고 예하는 과정을 의미합니다 이는 회로계, 고장 진단, 시스템 최적화 등 다양한 응용 분야에 기초가 되며, 전기전자 기술의 발전에 필수적인 역할을 합니다. 본 문서에서는 전기회로 해석의 기본 원리...
# 복소평면 ## 개요 복소평면(complex plane)은 복소수를하학적으로 표현하기 위해 사용하는 2차원 평면으로, 수학 전반에서 복소수의 성질을 시각화하고 분석하는 데 핵심적인 도구이다. 복소수는 실수부와 허수부로 구성므로, 이를 각각 평면의 가로축(실수축)과 세로축(허수축)에 대응시켜 점으로 나타낼 수 있다. 이 평면은 **가우스 평면**(Gau...
가우스 소법 ## 개요 **가스 소거법**(Gaussianination)은 선형 연립방정을 풀기 위한 가장 대표적인 알고리즘 중 하나로, 행렬을 **기약 사다리꼴**(reduced row echelon form) 또는사다리꼴row echelon form)로 변환하여 해를 구하는 방법이다. 이 방법은 독일의 수학자 카를 프리드리히 가우스의 이름을 따 명명...
# 극형식 ##요 복소수는 실수와 허수부 구성된 수 체계, $ z = a + bi $단, $ i = \sqrt{-1 $)의 형태 나타낼 수 있다. 표현을 **직교형식**(또는 대수형식)이라 한다. 그러나 복소수를 평면 상의 점이나 벡터로 해할 때, 직교형식 외에도 **극형**(polar form)이라는 또 다른 표현 방식이 유용하다. 극형식은 복소수를 ...
# 지수족 형태 지수족(Exponential Family Form)는 통계학에서 중요한 확률분의 수학적 구로, 많은 일반적인 확률분포들이 이 형태로 표현될 수 있다. 지수족은 추정 이론, 베이즈 통계, 일반화선형모형(GLM), 정보 이론 등 다양한 통계적 분석에서 핵심적인 역할을 하며, 수학적 처리의 용이성과 이론적 아름다움을 동시에 갖춘 구조이다. 본 ...
# 회귀 방정식 개요 **회귀 방식**(Regression Equation)은 통학에서 두 개 이상의 변수 간의 관계를 수학적으로 모델링하여, 한 변수의 값을 다른 변수의 값을 기으로 예측하는 사용되는 수식입니다. 주로 독립 변수(independent variable)와 종 변수(dependent variable) 사이의관 관계를 분석하고, 이를 바탕...
# 선형대수 선형대수(Linear Algebra) 수학의 한 분야로, **벡터 공간**(vector spaces),선형 변환**(linear transformations), **행렬**(matrices), **연립일차방정식**(systems of linear equations) 등을 다룹니다. 현대학뿐 아니라 물리학, 컴퓨터 과학, 공학, 경제학, 통계학...
# 주기 함수 개요 **기 함수**(Periodic)는 수학, 특히 함수론에서 매우 중요한 개념 중 하나로, 특정 간격(주기)을 두고 그 함수값이 반복되는 성질을 가진 함수 의미한다. 주기 함수는 자연현상의 반복성, 예를 들어 파동, 진동, 계절 변화 등과 밀접한 관련이 있으며, 삼각함수는 대표적인 주기 함수의 예이다. 이 문서에서는 주기 함수의 정의...
# 산술 평균 개요 **술 평균**(arithmetic mean)은계학에서 가장 기본적이고 널리 사용되는 평균의 형태 중 하나로, 주어진 데이터 집합의 모든 값을 더 후 그 개수로 나누어 얻는 대표값이다. 일반적으로 '평균'이라고 할 때 대부분 산술 평균을 의미하며, 데이터의 중심 경향(central tendency)을 파악하는 데 핵심적인 역할을 한...
# EfficientNet EfficientNet은 구글(Google) 연구팀이2019년에 발표한 컨볼루션 신경망(Convolutional Neural Network,) 아키텍처, 정확도와산 효율성 사이의 최적 균형을 추하는 것을 목표로 설계되었습니다. 기존의 CNN 모델들이 네트워크의 깊이(depth), 너비(width), 해상도(resolution)를...
# 장기 기억 신경망## 개요 **장기 신경망**(Long Short-T Memory, LSTM)은 순환 신망(Recurrent Neural Network,NN)의 한형으로, 시계열 데이터나 순차적 데이터를 효과적으로 처리하기 위해 설계 인공신경망 구조입니다. 전통적인 RNN은 장기 의존성(long-term dependencies) 문제, 즉 오래된 정보...
# N-그램## 개요 **N-그램**(N-gram)은어처리(Natural Language Processing, NLP) 분야에서 언어 모델(Language Modeling)에리 사용되는 기초적인 통계적 기법이다. N-램은 연속 N개의 아이템(item)으로 구성된 부분열을 의미하며, 언어 처리에서는 주로 연속된 N개 단어(word) 또는 음소(phoneme...
# 완전제곱식 ## 개요 **완전제식**(完全平方式, Perfect Trinomial)은 대수학 자주 등장하는 특수 다항식의 일종으로, 어떤 이항식의 제곱으로 표현할 수 있는 삼항식을 의미한다. 즉, 두 항의 합 또는 차를 제곱한 결과로 나타나는 다항식이다. 완전제곱식은 인수분해, 방정식 풀이, 제곱근 계산, 이차함수의 꼭짓점 찾기 등 다양한 수학적 응...
# 구조 해석 구조 해석(Structural Analysis)은 건축물, 교량, 기계 부품, 항공기, 선박 등 다양한 구조물이 외부 하중(힘,력, 진동 온도 변화 등) 받을 때 어떻게응하는지를 수적·물리적으로 분하는 기계공학 및 토목공학의 핵심 분야이다. 이는 구조물의 **강도**, **강성**, **안정성**, **내구성** 등을 평가하고, 설계 단계에...
# 편미분방정식 ## 개요 편미방정식(Partial Differential Equation,DE)은 두 개 이상의립 변수를 갖는와 그 함수의 **편미분**(partial derivative)들 사이의 관계를 나타내는 수학적 방정식입니다. 일반 미분방정식(ODE)이 하나의 독립 변수(예: 시간)에 대한 함수의 도함수를 다룬다면, 편미분방정식은 공간과 시간...
# PID 제어기 ## 개요 PID 제어기(PID Controller, Proportional-Integral-Derivative Controller)는 제어공학에서 가장 널리 사용되는 피드백 제어기 일종으로, 시스템의 출력이 목표값(Setpoint)에 빠르고 정확하게 수렴하도록 제어 입력을 조정하는 장치입니다. PID 제어기는 비례(P), 적분(I),...
# 행렬-벡터 연산 행렬-벡터산은 선형대수의 핵심 개념 중 하나로, 데이터과학 머신러닝, 컴퓨터 그래픽스, 물리학 등 다양한 분야에서 광범위하게 활용됩니다. 특히 고차원 데이터를 처리하고 변환하는 데 있어 행렬과 벡터의 연산은 계산 효율성과 수학적 표현의 간결성을 제공합니다. 본 문서에서는 행렬-벡터 연산의 정의, 기본 연산 종류 계산 방법, 활용 사례 ...