# 접선 가속도 ## 개요 **접선 가속도**(tangential acceleration는 물체가선 경로를 따라동할 때, 그 속도의 **크기**가 변화하는 정도를 나타내는 물리량이다. 원운동이나 일반적인 곡선 운동에서 물체의 가속도는 두 가지 성분으로 나눌 수 있는데, 하나는 속도의 방향 변화를 나타내는 **법선 가속도**(또는 중심 가속도), 다른 하...
검색 결과
"물리학"에 대한 검색 결과 (총 146개)
# 선형 가속도 ##요 선형 가속도(Linear Acceleration)는 물체 직선 방향으로 속도 변화시키는 비율을 나타내는 물리이다. 운동학(Mechan)에서 가속는 속도의 시간에 대한 변화율로 정의되며, 특히 방향이 일정한 직선 운동에서의 가속도를 **선형 가속도**라고 부른다. 이는 회전 운동에서 발생하는 각가속도(Angular Accelerat...
# 복소평면 ## 개요 복소평면(complex plane)은 복소수를하학적으로 표현하기 위해 사용하는 2차원 평면으로, 수학 전반에서 복소수의 성질을 시각화하고 분석하는 데 핵심적인 도구이다. 복소수는 실수부와 허수부로 구성므로, 이를 각각 평면의 가로축(실수축)과 세로축(허수축)에 대응시켜 점으로 나타낼 수 있다. 이 평면은 **가우스 평면**(Gau...
# 복소수 복소수(複素數, Complex)는 실수부와 허부로 구성된 수 체계로 수학, 물리학, 공학 등 다양한 분야에서 핵심적인 역할을 한다.소수는 차원 평면상 점으로 시각화할 수, 복소해석학(Complex Analysis의 기초를성한다. 이 문서 복소수의 정, 대수적 성질, 기하적 표현 연산법, 그리고 응용 분야에 대해 체계적으로 설명한다. --- ...
# 복소근 ## 개요 복근(複素, Complex Root)이란정식의 해 실수부와 허부를 모두 가질 수 있는 복소수 형태 근을 의미한다. 특히 실계수 다방정식에서 실수 범위 내 해를 찾을 수 없을 때, 복수 범위로 확장하면 해가 존재하는 경우가 많으며, 이러한 해를 복소근 한다. 복소근은 대학의 핵심 개념 중 하나로,16세기 이후 복소수의 체계적인 도입과...
# 극형식 ##요 복소수는 실수와 허수부 구성된 수 체계, $ z = a + bi $단, $ i = \sqrt{-1 $)의 형태 나타낼 수 있다. 표현을 **직교형식**(또는 대수형식)이라 한다. 그러나 복소수를 평면 상의 점이나 벡터로 해할 때, 직교형식 외에도 **극형**(polar form)이라는 또 다른 표현 방식이 유용하다. 극형식은 복소수를 ...
# 실수 개요 실(實數, Real)는 수학 특히 해석학 통계학에서 가장초적이면서도 핵심적인 수 체계 중 하나이다 실수는 수선 위의 모든 점에 일대일응하는 수의합으로 정의되며,리수와 무리수를 모두 포함한다. 통학에서는 데이터의 측정값, 확률, 평균, 분산 등 대부분의 수치적가 실수로 표현되기 실수 체계의 이해는 통계적 분석의 기초가 된다. 실수는 자연...
# Tesla (GPU 제품 라) NVIDIA Tesla는 고성능팅(HPC), 인공지능I), 데이터 과학, 그리고 과학 시뮬레이션 분야에 특화된 GPU 라인입니다. 이 라인은 일반 소비자용 그래픽 카드와는 달리, 컴퓨팅 성능과 안정성, 에너지 효율성에 중점을 두고 설계되었으며, 주로 데이터센터, 슈퍼컴퓨터, 클라우드 인프라에서 사용됩니다. Tesla 브랜...
# 라그랑주 표기 라그랑주 표법(Lagrange's notation)은분을 나타내는 수학 기 체계 중 하나로, 프랑스의 수학자 조제프루이 라그랑주(Joseph-Louis Lagrange의 이름을 따서 명명되었다. 표기법은의 도함수(derivative)를 표현하는 데 널리 사용되며, 특히 미적분학 교육 및 공학, 물리학 등 다양한 분야에서 흔히 등장한다. ...
# 선형대수 선형대수(Linear Algebra) 수학의 한 분야로, **벡터 공간**(vector spaces),선형 변환**(linear transformations), **행렬**(matrices), **연립일차방정식**(systems of linear equations) 등을 다룹니다. 현대학뿐 아니라 물리학, 컴퓨터 과학, 공학, 경제학, 통계학...
# 음함수 표현 ## 개요 음함수 표현(implicit function representation)은 수학에서 두 변수 사이의 관계를 명시적으로 함수의 형태로 나타내지 않고, 두 변수가 포함된 방정식의 형태로 표현하는 방법이다. 일반적으로 함수는 독립변수 $ x $에 대해 종속변수 $ y $를 $ y = f(x) $와 같이 **양함수**(explicit...
# 매개변수 표현 매개변수 표현(Parameter Representation)은 수학에서 곡선,면 또는 더 복잡한 기하학적 객체를 **매개변수**(parameter)를 이용하여 정의하는이다. 이 방식은존의 함수 표현인 $ y = f(x) $ 형태로 표현하기 어려운 곡선이나 다차원 도형을 보다 유연하고 직관적으로 기술할 수 있게 해준다. 특히, 평면 곡선,...
# 주기 함수 개요 **기 함수**(Periodic)는 수학, 특히 함수론에서 매우 중요한 개념 중 하나로, 특정 간격(주기)을 두고 그 함수값이 반복되는 성질을 가진 함수 의미한다. 주기 함수는 자연현상의 반복성, 예를 들어 파동, 진동, 계절 변화 등과 밀접한 관련이 있으며, 삼각함수는 대표적인 주기 함수의 예이다. 이 문서에서는 주기 함수의 정의...
# numpy ## 개요 **NumPy**(Numerical Python의 약자)는 파이썬에서 과학적 계산과 데이터 분석을 위한 핵심 라이브러리 중 하나로, 고성능의 다차 배열 객체(`nd`)와 이를 효율 다루기 위한 수학적 함수 제공합니다. NumPy는 Python의 기본보다 훨씬 빠르고 메모리 효율적인 배열 연산을 가능하게 하며, 데이터과학, 기계학...
슈뢰딩거 방식 ## 개요 **뢰딩거 방정식**(Södinger Equation은 양자역학 핵심을 이루는 기본 방정식으로, 미시 세계에서 입자의 운동과 상태를 기술하는 데 사용된다. 이 방정식은 1926년 오스트리아의 물리학자 **에르빈 슈뢰딩**(Erwin Schröinger)에 의해안되었으며, 고전역학에서 뉴턴의 운동 법칙이 가지는 역할과 유사하게, ...
# 전반사 ## 개요 전반사(全反射 Total Internal Reflection)는이 굴절률이 높은 매질에서 굴절률이 낮은 매질로 진행할 때, 특정 각도 이상으로 입사하면 빛이 매질의 경계면을 넘어 나가지 않고 **전체가 반사**되는 현상을 말한다. 이 현상은 광학의 기본 원리 중 하나로, 광섬유 통신, 프리즘, 센서 기술 등 다양한 응용 분야에서 핵...
# 오목 오목은 미분학에서 함수의 그래가 가지는 곡선의 성질 중 하나로, 그래프의 **곡률 방향**을 설명하는 중요한 개념이다. 함수의 오목성(또는 볼성)은 함수의 2차 도함수의 부호를 판단할 수 있으며, 최적화 이론, 경제학, 물리학 등 다양한 분야에서 활용된다. 본 문서에서는 오목 함수의 정의, 수학적 조건, 기하학적 의미, 관련 개념 및 응용 사례를...
# 오차 함수 ##요 오차 함수(Error Function)는 수학, 특히 **확론**, **통계학**, **리학**, 그리고공학**에서 매우 중요한할을 하는 특수 함수이다. 이 함수는 정규분포의 누적분함수와 밀접한 관련이 있으며, 미분방정식의 해나 확률 계산에서 자주 등장한다. 오차 함수는 주로 **가우시안 적분**(Gaussian integral)과...
# 매끄러움 ## 개요수학, 특히 미분정식 이론에서 **매끄러움**(smooth)은 함수의 미분 가능성 정도를 나타내는 중요한 개념이다. 매끄러운 함수는 특정한 미분 가능성 조건을 만족하는 함수로, 미분방정식의 해가 존재하고 유일한지를 판단하거나, 해의 정규성(regularity)을 분석하는 데 핵심적인 역할을 한다. 매끄러움은 해석학적 성질 중 하나로,...
# 중력파 개요 중력파(Gravit Wave)는 아슈타인의 일반대성 이론 의해 예측된공간의 파동으로, 질량을 가진 물체가 가속 운할 때 시공의 곡률이 변화하며 발생하는 현상이다. 중력파는 빛의 속도로 우주를 전되며, 지구를 통과할 때 극미세한 시공간의 왜곡을 유발한다. 2015년 9월 14일, 레이저 간섭계 중력파 관측소(LIGO)에 의해 최초로 직접...