# 타겟 인코딩 ## 개요 **타겟 인코딩**(Target)은 머신러닝과 과학 분야에서 범주형 변수(C Variable)를 수형 변수로 변환하는 고급 인딩 기법 중입니다. 이 방법은주형 변수의 범주(Category)를 해당 범에 속하는 타 변수(Target Variable)의계적 요약(예: 평균, 중값, 분산)으로 대체하는식입니다. 특히귀 또는 분류에서...
검색 결과
"비선형 관계"에 대한 검색 결과 (총 39개)
# 인코딩 ## 개요 **인코딩**(Encoding)은 정보를 특정 형식이나 체계에 맞춰 변환하는 과정을 의미하며, 특히 **데이터 과학**(Data Science) 분야에서는 범주형 데이터를 머신러닝 모델이 이해할 수 있는 수치형 형태로 변환하는 기법을 주로 지칭합니다. 컴퓨터는 텍스트나 범주(category) 형태의 데이터를 직접 처리할 수 없으므로...
# 데이터 변환 데이터 변환(Data Transformation)은 데이터 과학 및 정보 처리 과정에서 핵심적인 단계 중 하나로, 원시 데이터를 분석이나 모델링에 적합한 형태로 재구조화하거나 변형하는 작업을 의미합니다. 이 과정은 데이터 정제, 통합, 정규화, 스케일링 등 다양한 기법을 포함하며, 데이터 품질을 높이고 분석 결과의 신뢰성을 보장하는 데 중...
# 선형 최소 제곱법 ## 개요 선형 최 제곱법(Linear Least Squares Method)은 통계학 수치해석에서 널리 사용되는귀분석 기법으로, 관측된 데이터와 모델의 예측값 사이의 **잔차 제곱합**(Sum of Squared Residuals)을 최소화하여 모의 파라미터를 추정하는 방법입니다. 이 방법은 선 회귀 모델의 추정에 가장 기본적이면...
# 선형 연산 ## 개요 선형 연산(Linear Operation)은 데이터 과학과 분석 분야에서 핵심적인 수학적 도구로, 선형 대수학(Linear Algebra)의 기본 원리를 기반으로 합니다. 이 연산은 행렬, 벡터, 스칼라 등을 활용해 데이터의 구조를 변환하거나 패턴을 추출하는 데 사용되며, 머신러닝, 통계 분석, 최적화 문제 등 다양한 분야에 적용...
Okay, I to write a professional wiki-style document in Korean about the Ordinary Least Squares (OLS) method under the category of Regression in Statistics. Let me start by outlining the structure base...
# 완전 연결 층 ## 개요 완전 연결 층(Fully Connected Layer)은 인공지능(AI) 분야에서 신경망(Neural Network)의 핵심 구성 요소 중 하나로, 입력 데이터와 출력 데이터 간의 복잡한 관계를 모델링하는 데 사용됩니다. 이 층은 전층 연결 구조를 가지며, 모든 노드가 이전 계층의 모든 노드와 연결되어 있습니다. 일반적으로 신...
# 활성화 함수 ## 개요/소개 활성화 함수는 인공신경망(ANN)에서 입력 신호를 처리하여 출력을 생성하는 데 사용되는 핵심 요소입니다. 이 함수는 신경망이 비선형 관계를 학습할 수 있도록 하며, 단순한 선형 모델로는 해결 불가능한 복잡한 문제(예: 이미지 인식, 자연어 처리)를 해결하는 데 기여합니다. 활성화 함수의 선택은 네트워크 성능, 수렴 속도...
# 로짓(Logit) ## 개요 로짓(logit)은 통계학과 데이터 과학에서 중요한 개념으로, 확률(probability)을 **로그-오즈(log-odds)** 형태로 변환하는 함수입니다. 이는 주로 **로지스틱 회귀**(logistic regression)와 같은 분류 모델에서 사용되며, 이진 결과(예: 성공/실패, 승리/패배)를 예측할 때 유용합니다....
# L1 정규화 ## 개요/소개 L1 정규화(L1 Regularization)는 머신러닝 모델의 과적합(overfitting)을 방지하기 위해 사용되는 중요한 기법 중 하나입니다. 이 방법은 모델의 파라미터(계수)에 절대값을 기반으로 페널티를 추가하여, 불필요한 특성(feature)을 제거하고 모델의 단순성을 유지합니다. L1 정규화는 특히 **스파시...
# PCA (주성분 분석) ## 개요 PCA(Principal Component Analysis)는 데이터 과학에서 널리 사용되는 **차원 축소 기법**으로, 고차원 데이터를 저차원 공간으로 변환하면서도 최대한 많은 정보를 유지하는 방법이다. 주성분 분석은 데이터의 분산을 최대화하는 방향(주성분)을 찾아내어, 이를 통해 데이터의 구조를 간결하게 표현하고 ...
# R-squared ## 개요 R-squared(결정계수)는 회귀분석에서 모델의 설명력(예측 능력)을 측정하는 주요 통계량이다. 이 값은 종속변수의 변동성 중 독립변수가 설명할 수 있는 비율을 나타내며, 0~1 사이의 값을 가진다. R-squared는 회귀모델의 적합도를 평가하는 데 널리 사용되지만, 단순히 모델의 성능만을 판단하는 지표로 활용될 수 있...
# 결정 계수 (R-squared) ## 개요 결정 계수(R-squared)는 통계학에서 회귀 모델의 설명력(예측 능력)을 측정하는 주요 지표로, 종속 변수의 변동성 중 독립 변수에 의해 설명되는 비율을 나타냅니다. 0~1 사이의 값을 가지며, 값이 클수록 모델이 데이터를 더 잘 설명한다고 해석됩니다. 결정 계수는 회귀 분석에서 모델 적합도 평가에 널리 ...
# 가상 모델 ## 개요 가상 모델(Virtual Model)은 데이터 과학 분석에서 실세계 현상을 추상화하거나 시뮬레이션을 통해 예측 및 의사결정을 지원하는 수학적 또는 알고리즘 기반의 구조물입니다. 이는 복잡한 시스템을 단순화하여 핵심 요소를 강조하고, 데이터를 기반으로 가설 검증이나 미래 추세를 분석하는 데 활용됩니다. 특히 머신러닝, 통계 모델링,...
# 분류 (Classification) ## 개요 분류(Classification)는 데이터과학에서 가장 핵심적인 기계학습(ML) 기법 중 하나로, 주어진 데이터를 사전 정의된 범주 또는 클래스에 할당하는 과정을 의미합니다. 이는 **지도학습(Supervised Learning)**의 대표적 유형으로, 입력 데이터(X)와 그에 해당하는 레이블(Y)을 기반...
# 다중 로지스틱 회귀 ## 개요 다중 로지스틱 회귀(Multinomial Logistic Regression)는 **이산형 종속 변수**를 예측하기 위한 통계적 모델로, 이진 로지스틱 회귀(Binary Logistic Regression)의 확장 형태이다. 이 방법은 두 가지 이상의 클래스(범주)를 가진 문제에 적용되며, 각 클래스에 대한 확률을 동시에...
# 회귀 방정식 ## 개요 회귀 방정식은 통계학에서 두 변수 간의 관계를 모델링하고 예측하는 데 사용되는 수학적 표현이다. 주로 독립변수(예: X)와 종속변수(예: Y) 사이의 상관관계를 분석하며, 이는 데이터의 패턴을 이해하고 미래 값을 추정하는 데 중요한 도구로 활용된다. 회귀분석은 다양한 분야에서 적용되며, 선형회귀, 로지스틱회귀, 다항회귀 ...
# 단순 회귀 ## 개요 단순 회귀(Simple Regression)는 하나의 독립 변수(X)와 종속 변수(Y) 간의 선형 관계를 모델링하는 통계적 방법이다. 이 기법은 데이터 간의 상관관계를 분석하고, 미래 값을 예측하거나 변수 간의 영향을 설명하는 데 널리 사용된다. 단순 회귀는 다중 회귀(Multiple Regression)와 달리 단일 독립 변수만...
# 선형 회귀 ## 개요 선형 회귀(Linear Regression)는 통계학과 데이터 과학에서 널리 사용되는 기초적인 예측 모델링 기법이다. 이 방법은 독립 변수(X)와 종속 변수(Y) 간의 선형 관계를 수학적 방정식으로 표현하여, 미래 값을 예측하거나 변수 간의 영향을 분석하는 데 활용된다. 선형 회귀는 단순 회귀(Simple Linear Regres...