# 등각사상 등각사상(Conformal Mapping)은 복소해석학에서 중요한 개념 중 하나로, 두 평면 영역 사이의 복소 함수 중에서 각도를 보존하는 특성을 가진 함수를 말한다. 이는 기하학적 변환의 일종으로, 특히 유체역학, 전기공학, 열전도 문제 등 다양한 응용 분야에서 널리 사용된다. 본 문서에서는 등각사상의 정의, 성질, 예시, 그리고 주요 응용...
검색 결과
"수학"에 대한 검색 결과 (총 494개)
# 전기회로 해석 전기회로 해석은 전자공학의 핵심 분야 중 하나로, 전기적소들(저항, 커패시터, 인덕터, 전원 등)이 연결된로의 전압 전류, 전력 물리량을 계산하고 예하는 과정을 의미합니다 이는 회로계, 고장 진단, 시스템 최적화 등 다양한 응용 분야에 기초가 되며, 전기전자 기술의 발전에 필수적인 역할을 합니다. 본 문서에서는 전기회로 해석의 기본 원리...
# 신호 처리 신호 처리(Signal Processing)는 물리적 현상이나 시스템에서 발생하는 **호**(signal) 분석, 변환, 조하거나 해석하여 유용한 정보를 추출하거나 신호의 품질을 개선하는 기술 분야입니다. 이는 통신, 음향, 이미지, 생체 신호, 제어 시스템 등 다양한 응용 분야에서 핵심적인 역할을 하며, 아날로그 신호와 디지털 신호 모두를...
# 복소평면 ## 개요 복소평면(complex plane)은 복소수를하학적으로 표현하기 위해 사용하는 2차원 평면으로, 수학 전반에서 복소수의 성질을 시각화하고 분석하는 데 핵심적인 도구이다. 복소수는 실수부와 허수부로 구성므로, 이를 각각 평면의 가로축(실수축)과 세로축(허수축)에 대응시켜 점으로 나타낼 수 있다. 이 평면은 **가우스 평면**(Gau...
# 복소수 복소수(複素數, Complex)는 실수부와 허부로 구성된 수 체계로 수학, 물리학, 공학 등 다양한 분야에서 핵심적인 역할을 한다.소수는 차원 평면상 점으로 시각화할 수, 복소해석학(Complex Analysis의 기초를성한다. 이 문서 복소수의 정, 대수적 성질, 기하적 표현 연산법, 그리고 응용 분야에 대해 체계적으로 설명한다. --- ...
# 복소근 ## 개요 복근(複素, Complex Root)이란정식의 해 실수부와 허부를 모두 가질 수 있는 복소수 형태 근을 의미한다. 특히 실계수 다방정식에서 실수 범위 내 해를 찾을 수 없을 때, 복수 범위로 확장하면 해가 존재하는 경우가 많으며, 이러한 해를 복소근 한다. 복소근은 대학의 핵심 개념 중 하나로,16세기 이후 복소수의 체계적인 도입과...
분배법칙## 개요 분배법칙分配法則, Distributive Law은 수학, 기초대수학에서 매우 중요한 성 중 하나로, 덧셈과 곱셈의 관계를 설명하는 법칙입니다. 법칙은 수을 전개하거나 인분해할 때 핵심적인 역할을 하며, 초등학교 수학 처음 소개된 후 중등 및 고등 수까지 폭넓게 적용됩니다분배법칙 괄호 안의 항에 괄호 밖의 수를 곱할 때, 각 항에 개별적으...
가우스 소법 ## 개요 **가스 소거법**(Gaussianination)은 선형 연립방정을 풀기 위한 가장 대표적인 알고리즘 중 하나로, 행렬을 **기약 사다리꼴**(reduced row echelon form) 또는사다리꼴row echelon form)로 변환하여 해를 구하는 방법이다. 이 방법은 독일의 수학자 카를 프리드리히 가우스의 이름을 따 명명...
# 극형식 ##요 복소수는 실수와 허수부 구성된 수 체계, $ z = a + bi $단, $ i = \sqrt{-1 $)의 형태 나타낼 수 있다. 표현을 **직교형식**(또는 대수형식)이라 한다. 그러나 복소수를 평면 상의 점이나 벡터로 해할 때, 직교형식 외에도 **극형**(polar form)이라는 또 다른 표현 방식이 유용하다. 극형식은 복소수를 ...
# 실수 개요 실(實數, Real)는 수학 특히 해석학 통계학에서 가장초적이면서도 핵심적인 수 체계 중 하나이다 실수는 수선 위의 모든 점에 일대일응하는 수의합으로 정의되며,리수와 무리수를 모두 포함한다. 통학에서는 데이터의 측정값, 확률, 평균, 분산 등 대부분의 수치적가 실수로 표현되기 실수 체계의 이해는 통계적 분석의 기초가 된다. 실수는 자연...
# 유클리드 기 ## 개요 **유클리 기하**(Euclidean Geometry)는대 그리스의 수자 **유클리드Euclid, 기원전 300년)가 저술한 『원론』(*Elements*)에 체계적으로 정리된 기하학 체계를 말한다. 이는 평면과 공간에서 점, 선, 면, 각, 도형 등의 성질과 관계를 다루는 고전 기하학의 핵심 분야로, 오랜 기간 동안 수학 교육...
# 설명변수의 분산## 개요 회귀분석(Regression Analysis)은 종속변수(dependent variable)와 이상의 독립변수(independent variable) 간의 관계를 모델링하고 분석하는 통계적 기법이다. 이 과정에서 독립변수는 일반적으로 **설명변수**(explanatory variable) 또는 **예측변수**(predictor...
# 매치드 필링 매치드 필터링(Matched Filtering)은 신호처리 분야에서 매우 중요한법 중 하나로, 특히 잡이 존재하는 환경에서 특정 신호를 최적의 방식으로 검출하기 위해 사용된다. 이 기법은 통신, 레이더, 음성 인식,료 영상 처리 등 다양한 분야에서 널리 활용되며, 신호 대 잡음비(SNR, Signal-to-Noise Ratio)를 최대화하...
# 회귀모형 적합도 회귀모형 적도(Regression Model Fit)는 통계학에서 회귀분석을 구축한 모형이 관측된 데이터를 얼마나 잘 설명하는지를 평가하는 척도이다. 적합도 분석은 모형의 유용성과 신뢰성을 판단하는 데 핵심적인 역할을 하며, 모형이 데이터에 과적합(overfitting)되었는지, 또는 부적합(underfitting) 상태인지 진단하는 ...
# 정규방정식 ## 개요 정규방정식(Normal Equation)은 **선형회귀**(Linear Regression) 문제를 해결하기 위한 해석적(analytical) 방법 중 하나로, 최소제곱법(Least Squares Method)을 사용하여 선형 모델의 계수를 직접 계산하는 수식이다. 이 방정식은 손실 함수인 **잔차 제곱합**(Sum of Squ...
# 기울기 점선 ## 개 기울기 점근선(영어: slant asymptote 또는 oblique asymptote)은 유함수의 그래프가 무한대 방향으로 접근만 결코 만나 않는 직선 중, 수평선이 기울기를 가진 직선을 의미한다. 일반적으로, 유리함수의 분모보다 분자의 차수가 **정확히 1차수 더 클 때** 기울기 점근선이 존재한다. 이 점근선은 함수의 전반...
# 지수족 형태 지수족(Exponential Family Form)는 통계학에서 중요한 확률분의 수학적 구로, 많은 일반적인 확률분포들이 이 형태로 표현될 수 있다. 지수족은 추정 이론, 베이즈 통계, 일반화선형모형(GLM), 정보 이론 등 다양한 통계적 분석에서 핵심적인 역할을 하며, 수학적 처리의 용이성과 이론적 아름다움을 동시에 갖춘 구조이다. 본 ...
# 회귀 방정식 개요 **회귀 방식**(Regression Equation)은 통학에서 두 개 이상의 변수 간의 관계를 수학적으로 모델링하여, 한 변수의 값을 다른 변수의 값을 기으로 예측하는 사용되는 수식입니다. 주로 독립 변수(independent variable)와 종 변수(dependent variable) 사이의관 관계를 분석하고, 이를 바탕...
# 친족 선택 ## 개요 **친족 선택**(Kin Selection)은 진화 생물학에서 개체가 자신과 유전적으로 유한 친족(혈연관계에 있는 개체)을 도와 생식 성공(fitness)을 높이는 행동이 자연 선택을 통해 진화할 수 있다는 이론이다. 이 개념은 전통적인 다윈의 자연 선택 이론에서 강조하는 '자기 생존과 번식'을 넘어서, **유전자의 관점에서 진...
# 분산 ## 개요 **분산**(Variance)은 통계학에서 데이터의 산포도, 즉 데이터 값들이 평균을 중심으로 얼마나 퍼져 있는지를 나타내는 대표적인 척도이다. 분산은 회귀분석, 추정, 가설 검정 등 다양한 통계적 분석에서 핵심적인 역할을 하며, 데이터의 변동성과 불확실성을 정량적으로 평가하는 데 사용된다. 특히 회귀분석에서는 잔차의 분산, 설명변수...