검색 결과

"수학적 정의"에 대한 검색 결과 (총 34개)

SHAP 값

기술 > 데이터과학 > 분석 | 익명 | 2025-10-10 | 조회수 18

# SHAP 값 ## 개요 SHAP 값(Shapley Additive exPlanations) 머신러닝 모델의 예측 결과를 해석하기 위한모델 해석성**(Interpretability) 기법 중로, 게임 이론의 **샤플리 값**(Shapley Value) 개념을 기반으로 합니다. SHAP은 각 특성(feature)이 모델의 개별 예측에 기여한 정도를 정량...

수렴 속도

기술 > 수치최적화 > 수렴 성질 | 익명 | 2025-10-07 | 조회수 17

# 수렴 속도 수렴 속도(Convergence Rate) 수치최적화 알고리 최적해에 접근하는 속도를 수학적으로 정의한 개념이다. 최적화 문제를 해결하는 과에서 반복적인 계산을 통해 해를 점진적으로 개선하는데, 이 과정에서 해가 실제 최적해에 얼마나 빠르게 가까워지는지를 평가하는 척도가 바로 수렴 속도이다. 수렴 속도는 알고리즘의 효율성과 실용성을 판단하는...

로그 변환

기술 > 데이터과학 > 로그 변환 | 익명 | 2025-10-07 | 조회수 13

# 로그 변환 ## 개요 로그 변환(log transformation)은 데이터 과학 및 통계 분석에서 자주 사용되는 **비선형 데이터 변환 기법**으로, 주로 **비대칭적이고 오른쪽으로 치우친**(right-skewed) 연속형 변수의 분포를 정규 분포에 가깝게 만들기 위해 활용된다. 특히 지수적 성장 패턴을 보이거나 값의 범위가 매우 넓은 데이터(예...

레벤슈타인 거리

기술 > 자연어처리 > 편집 거리 | 익명 | 2025-09-30 | 조회수 18

# 레벤슈타인 거리## 개요 **레벤슈타인 거리Levenshtein)는 두 문자열 간의 유사도를 측정하는 **편집 거리**(Edit Distance)의 형태로, 러시아 수학자 **블라디미르 레벤슈타인**(Vladimir Levenshtein)이 1965년에 제안한 개념이다. 이 거리는 한 문자열을 다른 문자열로 변환하기 위해 필요한 **최소 편집 연산 횟...

방향도함수

수학 > 다변수 미적분학 > 방향도함수 | 익명 | 2025-09-28 | 조회수 17

# 방향도함수 방향도함수(方向導數, Directional Derivative)는 다변수 미적분학에서 개념 중 하나로, 함수가 방향으로 변화하는 비율을 나타냅니다. 단순 좌표축 방향(예: x, y축)으로의 변화율인 편미분을 일반화하여, 임의의 방향으로의 변화율을 계산할 수 있게 해줍니다. 이는 함수의 기울기와 최적화, 물리학적 모델링 등 다양한 분야에서 핵...

확률

수학 > 통계학 > 확률론 | 익명 | 2025-09-26 | 조회수 26

# 확률 ## 개요 **확률**(Probability)은 어떤 사건이 발생할 가능성을치적으로 표현한 개념으로, 통계학과 수학, 특히 확률론의 핵심 기초를 이룹니다. 현실 세계에서 불확실한 상황을 분석하고 예측하는 데 널리 활용되며, 과학, 공학, 경제, 의학, 인공지능 등 다양한 분야에서 중요한 도구로 사용됩니다. 확률은 일반적으로 0과 1 사이의 실...

Types and Programming Languages

기술 > 프로그래밍 > 학습 자료 | 익명 | 2025-09-23 | 조회수 21

# Types and Programming Languages ## 개요 《**Types and Programming**(이하 *TAPL*)는 벤자민 C. 파이어스(Benjamin C.)가 저술한로그래밍 언어론과 형식스템(formal type)에 관한 대표적인 교과서입니다. 이 책은 프로그래밍어의 설계, 구현 분석에 있어 **타입 이론**(type the...

MSR

기술 > 영상 처리 > Retinex 알고리즘 | 익명 | 2025-09-21 | 조회수 26

# MSR: 다중 스케일 Retinex 알고리즘## 개요 **MSRMulti-Scale Retinex)은 디털 영상 처리 분야에서 널리 사용되는 색 보정 및 명암 대비 향상 기법 중 하나로, 인간의각 시스템이 다양한 조명 조건 하에서도 색상과 밝기를 일관되게 인식하는 능력에 착안하여 개발된 **Retin 이론**을 기반으로 합니다. MSR은 특히 저조도,...

실수

과학 > 수학 > 통계 | 익명 | 2025-09-19 | 조회수 37

# 실수 개요 실(實數, Real)는 수학 특히 해석학 통계학에서 가장초적이면서도 핵심적인 수 체계 중 하나이다 실수는 수선 위의 모든 점에 일대일응하는 수의합으로 정의되며,리수와 무리수를 모두 포함한다. 통학에서는 데이터의 측정값, 확률, 평균, 분산 등 대부분의 수치적가 실수로 표현되기 실수 체계의 이해는 통계적 분석의 기초가 된다. 실수는 자연...

정규방정식

수학 > 대수학 > 선형대수 | 익명 | 2025-09-19 | 조회수 36

# 정규방정식 ## 개요 정규방정식(Normal Equation)은 **선형회귀**(Linear Regression) 문제를 해결하기 위한 해석적(analytical) 방법 중 하나로, 최소제곱법(Least Squares Method)을 사용하여 선형 모델의 계수를 직접 계산하는 수식이다. 이 방정식은 손실 함수인 **잔차 제곱합**(Sum of Squ...

분산

과학 > 통계학 > 회귀분석 | 익명 | 2025-09-19 | 조회수 33

# 분산 ## 개요 **분산**(Variance)은 통계학에서 데이터의 산포도, 즉 데이터 값들이 평균을 중심으로 얼마나 퍼져 있는지를 나타내는 대표적인 척도이다. 분산은 회귀분석, 추정, 가설 검정 등 다양한 통계적 분석에서 핵심적인 역할을 하며, 데이터의 변동성과 불확실성을 정량적으로 평가하는 데 사용된다. 특히 회귀분석에서는 잔차의 분산, 설명변수...

오목

수학 > 미적분학 > 미분학 | 익명 | 2025-09-17 | 조회수 31

# 오목 오목은 미분학에서 함수의 그래가 가지는 곡선의 성질 중 하나로, 그래프의 **곡률 방향**을 설명하는 중요한 개념이다. 함수의 오목성(또는 볼성)은 함수의 2차 도함수의 부호를 판단할 수 있으며, 최적화 이론, 경제학, 물리학 등 다양한 분야에서 활용된다. 본 문서에서는 오목 함수의 정의, 수학적 조건, 기하학적 의미, 관련 개념 및 응용 사례를...

스케일드 닷 프로덕트 어텐션

기술 > 자연어처리 > 어텐션 | 익명 | 2025-09-14 | 조회수 24

# 스케일드 닷 프덕트 어텐션 스케드 닷 프로덕트 어션(Scaled Dot-Product Attention) 자연어처리(NLP) 분야에서 가장 핵심적인 어텐션 메커니즘 중 하나로, 특히 트스포머(Transformer) 아키텍처에서 중심적인 역할을 합니다. 이 메커니즘은 입력 시퀀스 내 각 단어 간의 관련성을 효율적으로 계산하여, 모델이 문장의 의미를 보다...

L2 정규화

기술 > 머신러닝 > 정규화 | 익명 | 2025-09-11 | 조회수 28

# L2 정규화 개요 **L2 정규화**(2 Regularization), 또는 **리지 정규화**(Ridge Regularization), **중치 감소**(Weight Decay)는 머신러닝 및 딥러닝 모델에서 **과적합**(Overfitting)을 방지하기 위해 사용되는 대표적인 정규화 기법 중 하나입니다. 이 방법은 모델의 가중치에 제약을 가하...

PDF

과학 > 통계학 > 확률분포 | 익명 | 2025-09-10 | 조회수 30

# PDF ## 개요 PDF는 " Density Function"의 약자로, 한국어로는 **확률밀도함수**(確率密度函數라고 한다. 통학과 확률론에서 연속 확률변수의 확률 분포를 설명하는 데 핵심적인 역할을 하는 함수이다. PDF는 특정 값에서 확률변수가 나타날 **상대적인 가능성**을 나타내며, 연속 확률변수의 확률을 구할 때는 특정 구간에 대한 함수의...

로지스틱 방정식

생물학 > 수학모델링 > 개체군 성장 모델 | 익명 | 2025-09-09 | 조회수 24

# 로지스틱 방정 ## 개요 로지스틱 방정식(Logistic Equation)은 생물학에서 개체군의 성장 양상을 수학적으로 모델링하는 데 널리 사용되는 미분 방정식이다. 이 방정식은 개체군이 무한한 자원을 가정한 기하급수적 성장(지수 성장)에서 벗어나, 자원의 제한을 고려한 현실적인 성장 패턴을 설명한다. 즉, 개체군이 초기에는 빠르게 증가하지만, 환경...

시그모이드 함수

교육 > 수학 > 시그모이드 함수 | 익명 | 2025-09-07 | 조회수 29

# 시그모이드 함수 ## 개요 시모이드 함수(Sigmoid Function)는 S자 형태의 곡선을 가지는 수학적 함수로, 특히 인공지능, 통계학, 생물학, 그리고 수학 교육 등 다양한 분야 중요한 역할을. 이 함수는 입력값이 매우 작을 때 출력값이 0에 가까워지고, 입력값이 매우 클 때는 출력값이 1에 가까워지는 특성을 가지며, 중간 영역에서는 부드러운...

라플라스 방정식

수학 > 미적분학 > 타원형 방정식 | 익명 | 2025-09-07 | 조회수 30

# 라플라스 방정식 라플라스 방정식(Laplace's Equation)은 수학, 특히 편미분방정식과 수리물리학에서 매우 중요한할을 하는 타원형 편미분방정식의 대표적인 예입니다. 이 방정식은 정적인리적 현상, 즉 시간에 따라 변하지 않는 평형 상태를 기술하는 데 널리 사용되며, 전기학, 중력장, 유체역학, 열전도 등 다양한 분야에서 등장합니다. 라플라스 방...

최적화

기술 > 데이터과학 > 최적화 알고리즘 | 익명 | 2025-09-06 | 조회수 32

# 최적화 ## 개요 최적화(Opt)는 주어진 조건에서 가장 좋은 해를 찾는 과정을 의미하며, 데이터과학 기계학습, 공학 경제학 등 다양한 분야에서 핵심적인 역할을 한다.과학에서는 모델의 예측 성능을 향상시키기 위해 손실 함수(Loss Function)를 최소화, 제약 조건을 만족하면서 목표 함수를 극대화/극소화하는 작업이 자주 발생한다. 최적화 알고리...

고차원 확장

수학 > 기하학 > 고차원 확장 | 익명 | 2025-09-05 | 조회수 28

# 고차원 확장 ##요 고차 확장(High-dimensional Extension)은 기하학에서 3차원 공간을 넘어서 4차 이상의 차원으로 개념을 확장하는 수적 접근을 의미합니다. 이는 유클리드 기하학의 기본 원리를 고차원 공간에 적용하고, 점, 선, 면, 입체와 같은 기하적 객체를 $ n $차원으로 일반화하는 것을 포함합니다. 고차원 기하는 순수 수학...