검색 결과

"미분 가능"에 대한 검색 결과 (총 43개)

매개변수 민감성

기술 > 데이터과학 > 모델 평가 | 익명 | 2025-11-23 | 조회수 5

# 매개변수 민감성 ## 개요 **매개변수 민감성**(Parameter Sensitivity)은 데이터과학 및 머신러닝 모델에서 모델의 출력 또는 성능이 특정 매개변수(Parameter)의 변화에 얼마나 민감하게 반응하는지를 평가하는 개념이다. 이는 모델의 안정성, 해석 가능성, 그리고 신뢰성을 판단하는 데 중요한 요소로 작용하며, 특히 하이퍼파라미터 ...

# 입자 군집 최적화 ## 개요 **입자 군집 최적화**(Particle Swarm Optimization, PSO)는 1995년 제임스 케네디(James Kennedy)와 러셀 유버트(Russell Eberhart)에 의해 제안된 **메타휴리스틱 최적화 알고리즘**으로, 생물의 군집 행동(예: 새 떼의 비행, 물고기 떼의 이동)을 모방하여 최적해를 탐...

파동 방정식

수학 > 미분방정식 > 편미분방정식 | 익명 | 2025-11-04 | 조회수 20

파동 방정식 ## 개요 **파동 방정식**(Wave Equation)은리학과 공학에서 파동 현상, 즉 진동이나 에너지 공간을 따라 전파되는정을 수학적으로 기술하는 **편미분방정식**(DE)의 대표적인 예이다. 이 방정식은 음파, 전자기파, 수면파, 지진파 등 다양한 자연 현상의 모델링에 사용되며, 고전역학, 전자기학, 양자역학 등 여러 분야에서 핵심적인...

비용 함수

기술 > 데이터과학 > 최적화 | 익명 | 2025-10-12 | 조회수 15

# 비용 함수 ## 개요 비용 함수(Cost Function), 손실 함수(Loss Function는 머신러닝 및 데이터과학에서 모델의 예측 성능을 정적으로 평가하는 데 사용되는 핵심 개념이다. 이 함수는 모이 실제 데이터를 기반으로 예측한 값과 실제 관측값 사이의 차이, 즉 '오차'를 수치화하여 모델이 얼마나 잘못 예측하고 있는지를 나타낸다. 비용 함...

수렴 속도

기술 > 수치최적화 > 수렴 성질 | 익명 | 2025-10-07 | 조회수 18

# 수렴 속도 수렴 속도(Convergence Rate) 수치최적화 알고리 최적해에 접근하는 속도를 수학적으로 정의한 개념이다. 최적화 문제를 해결하는 과에서 반복적인 계산을 통해 해를 점진적으로 개선하는데, 이 과정에서 해가 실제 최적해에 얼마나 빠르게 가까워지는지를 평가하는 척도가 바로 수렴 속도이다. 수렴 속도는 알고리즘의 효율성과 실용성을 판단하는...

그래프 표현

수학 > 미적분학 > 함수 | 익명 | 2025-10-06 | 조회수 16

# 그래프 표현 함수의 **그래프 표현**(Graphical Representation)은 함수의 정의역과 공역 사이의 관계를 시각적으로 나타내는 방법으로, 미적분학에서 매우 중요한 도구 중 하나입니다. 함수의 그래프를 통해 함수의 성질, 변화 양상, 극값, 연속성, 미분 가능성 등을 직관적으로 파악할 수 있으며, 복잡한 수학적 개념을 이해하고 설명하는 ...

적분 근사

기술 > 수치계산 > 수치적 적분 | 익명 | 2025-10-05 | 조회수 21

# 적분 근사 ## 개요 적분 근사(Numerical Integration)는 해석적으로 정적분을 계산하기 어려운 함수에 대해, 수치적 방법을 사용하여 그 값을 근사적으로 구하는 기법을 의미한다. 수치적분은 공학, 물리학,계학, 컴퓨터 과학 등 다양한 분야에서 널리 활용되며, 특히 해석적 해를 구할 수 없는 복잡한 함수나 실험 데이터 기반의 함수에 대해...

로피탈의 정리

교육 > 수학 > 미적분학 | 익명 | 2025-10-04 | 조회수 17

# 로피탈의 정리 로피탈의 정리(L'Hpital's Rule)는적분학에서한을 구할 때용하게 사용되는리 중 하나로 특정 조건 하에서 부정형(indeterminate form)의 극한을 미을 통해 계산 수 있도록 해줍니다. 특히, $\frac{0}{0}$ 또는 $\frac{\infty}{\infty}$ 형태의 극한을룰 때 자주 활용되며, 복잡한 함수의 극한을...

방향도함수

수학 > 다변수 미적분학 > 방향도함수 | 익명 | 2025-09-28 | 조회수 17

# 방향도함수 방향도함수(方向導數, Directional Derivative)는 다변수 미적분학에서 개념 중 하나로, 함수가 방향으로 변화하는 비율을 나타냅니다. 단순 좌표축 방향(예: x, y축)으로의 변화율인 편미분을 일반화하여, 임의의 방향으로의 변화율을 계산할 수 있게 해줍니다. 이는 함수의 기울기와 최적화, 물리학적 모델링 등 다양한 분야에서 핵...

평균 절대 오차

기술 > 데이터과학 > 회귀 분석 | 익명 | 2025-09-27 | 조회수 22

# 평균 절대 오 ## 개요 **평균 절대 오차**(Mean Absolute Error, MAE)는 회귀 분석에서 예 모델의 성능을 평가하는 대표적인 지표 중입니다. MAE는 예측값과 실제 관값 사이의 차이, 즉 **오차**(error)의 절대값을 평균한 값으로, 모델이 평균적으로 얼마나 큰 오차를 내는지를 직관적으로 나타냅니다. 회귀 분석에서는 모...

MSE

기술 > 데이터과학 > 회귀 분석 | 익명 | 2025-09-27 | 조회수 19

# MSE ## 개요 **MSE**(Mean Squared Error, 평균 제곱 오차)는 회귀 분석에서 예측 모델의 정확도를 평가하는 데 널리 사용되는 지표입니다. 이 값은 예측값과 실제 관측값 사이의 차이(오차)를 제곱한 후, 그 평균을 계산함으로써 모델의 전반적인 오차 크기를 수치화합니다. MSE는 회귀 모델의 성능을 비교하거나 하이퍼파라미터 최적...

미분가능

수학 > 미적분학 > 미분학 | 익명 | 2025-09-26 | 조회수 21

미분가능미분가능(differentiable)은 미분학에서 매우 개념으로, 함수의 특정 지에서 접선이 존재하고 그 지점에서의 기울기를 잘 정의할 수 있는 성질을 의미한다. 이는 함수의 국소적인율을 분석하는 데 핵심적인 역할 하며, 연성과 함께 미적분학의 기초를 형성한다. 미분가능성은 물리학, 공학, 경제학 등 다양한 분야에서 함수의 행동을 예측하고 최적화 문...

음함수 표현

수학 > 함수 > 음함수 표현 | 익명 | 2025-09-18 | 조회수 30

# 음함수 표현 ## 개요 음함수 표현(implicit function representation)은 수학에서 두 변수 사이의 관계를 명시적으로 함수의 형태로 나타내지 않고, 두 변수가 포함된 방정식의 형태로 표현하는 방법이다. 일반적으로 함수는 독립변수 $ x $에 대해 종속변수 $ y $를 $ y = f(x) $와 같이 **양함수**(explicit...

주기 함수

수학 > 함수 > 삼각함수 | 익명 | 2025-09-18 | 조회수 27

# 주기 함수 개요 **기 함수**(Periodic)는 수학, 특히 함수론에서 매우 중요한 개념 중 하나로, 특정 간격(주기)을 두고 그 함수값이 반복되는 성질을 가진 함수 의미한다. 주기 함수는 자연현상의 반복성, 예를 들어 파동, 진동, 계절 변화 등과 밀접한 관련이 있으며, 삼각함수는 대표적인 주기 함수의 예이다. 이 문서에서는 주기 함수의 정의...

오목

수학 > 미적분학 > 미분학 | 익명 | 2025-09-17 | 조회수 31

# 오목 오목은 미분학에서 함수의 그래가 가지는 곡선의 성질 중 하나로, 그래프의 **곡률 방향**을 설명하는 중요한 개념이다. 함수의 오목성(또는 볼성)은 함수의 2차 도함수의 부호를 판단할 수 있으며, 최적화 이론, 경제학, 물리학 등 다양한 분야에서 활용된다. 본 문서에서는 오목 함수의 정의, 수학적 조건, 기하학적 의미, 관련 개념 및 응용 사례를...

매끄러움

수학 > 미분방정식 > 해석학적 성질 | 익명 | 2025-09-17 | 조회수 27

# 매끄러움 ## 개요수학, 특히 미분정식 이론에서 **매끄러움**(smooth)은 함수의 미분 가능성 정도를 나타내는 중요한 개념이다. 매끄러운 함수는 특정한 미분 가능성 조건을 만족하는 함수로, 미분방정식의 해가 존재하고 유일한지를 판단하거나, 해의 정규성(regularity)을 분석하는 데 핵심적인 역할을 한다. 매끄러움은 해석학적 성질 중 하나로,...

임계점

수학 > 미적분학 > 미분학 | 익명 | 2025-09-16 | 조회수 57

# 임계점 ## 개요 임계점(臨界, 영어: critical point) 미분학에서 함수의 국소적 성질을 분석하는 데 핵심적인 개념이다. 함수의 그래프에서 극값(극대 또는 극소)이 존재할 수 있는 후보 지점으로, 함수의 변화율이 0이 되거나 미분이 존재하지 않는 점을 의미한다. 임계점은 함수의 증가와 감소가 전환되는 지점, 즉 극값을 찾는 데 매우 중요한...

치역

수학 > 미적분학 > 함수 | 익명 | 2025-09-15 | 조회수 27

# 치역 ## 개요 **치역**(range)은 함수 출력값, 즉에 의해 정의역의 원소들이 대응되는 값들의 집합을 의미한다. 수학, 특히 미적분학에서 치은 함수의 행동과 성질을 분석하는 데 핵심적인 개념 중 하나이다. 함수 $ f: A \to B $가 주어졌을 때, 정의역 $ A $의 각 원소 $ x $에 대해 $ f(x) $의 값이 존재하며, 이러한 모...

MSE

기술 > 인공지능 > 모델 평가 | 익명 | 2025-09-15 | 조회수 38

# MSE ## 개요 **MSE**(Mean Squared Error, 평균 제곱 오차)는 회귀(regression) 문제에서 예측 모델의 성능을 평가하는 데 널리 사용되는 지표입니다. 이는 예측과 실제 관측값 사이의 차이(오차)를 제곱한 후, 그 평균을 계산함으로써 모델의 정확도를 수치화합니다. MSE는 인공지능, 특히 머신러닝 및 딥러닝 모델의 학습...

변곡점

수학 > 미적분학 > 미분학 | 익명 | 2025-09-13 | 조회수 30

# 변곡점 ## 개요 변곡점(變曲點, inflection point)은 함수 그래프가 **오목에서 볼록으로**, 또는 **볼록에서 오목으로** 변하는 지점을 의미한다. 즉, 함수의 **곡률**(curvature)이 부호를 바꾸는 점으로, 그래프의 형태가 변하는 전환점이라 할 수 있다. 변곡점은 미분학에서 함수의 그래프를 분석하고 해석하는 데 중요한 역할...