검색 결과

"Leibniz"에 대한 검색 결과 (총 6개)

라그랑주 표기법

수학 > 수학 기호 > 라그랑주 표기법 | 익명 | 2025-09-19 | 조회수 22

# 라그랑주 표기 라그랑주 표법(Lagrange's notation)은분을 나타내는 수학 기 체계 중 하나로, 프랑스의 수학자 조제프루이 라그랑주(Joseph-Louis Lagrange의 이름을 따서 명명되었다. 표기법은의 도함수(derivative)를 표현하는 데 널리 사용되며, 특히 미적분학 교육 및 공학, 물리학 등 다양한 분야에서 흔히 등장한다. ...

미적분학

교육 > 수학 > 미적분학 | 익명 | 2025-09-05 | 조회수 30

# 미적분학 ## 개요 미적학(微積分學, Calculus)은 수학의 한 분야로, **변화율**(미분)과 **누적량**(적분)을 다루는 학문이다. 현대 과학과 공학, 경제학, 물리학 등 다양한 분야에서 핵심 도구로 사용되며, 함수의 기울기, 면적, 부피, 속도, 가속도 등을 분석하는 데 필수적인 역할을 한다. 미적분학은 17세기에 아이작 뉴턴(Isaac ...

함수

수학 > 수학개념 > 함수와 관계 | 익명 | 2025-09-02 | 조회수 32

# 함수 ## 개요 **함수**(function)는 수학에서 매우 핵심적인 개념 중 하나로, 두 집합 사이의 특정한 관계를 설명하는 도구이다. 간단히 말해, 함수는 **입력값**(독립변수) 하나에 대해 **정확히 하나의 출력값**(종속변수)을 대응시키는 규칙이다. 함수는 수학 전반은 물론 물리학, 공학, 컴퓨터 과학, 경제학 등 다양한 분야에서 모델링과...

연쇄법칙

교육 > 수학 > 미적분학 | 익명 | 2025-07-16 | 조회수 74

# 연쇄법칙 (Chain Rule) ## 개요/소개 연쇄법칙(Chain Rule)은 미적분학에서 복합함수(composite function)의 도함수를 계산하는 기본적인 규칙이다. 두 함수 $ f(x) $와 $ g(x) $가 주어졌을 때, $ h(x) = f(g(x)) $로 정의된 복합함수의 도함수는 $ h'(x) = f'(g(x)) \cdot g'(x)...

미적분학

교육 > 수학 > 통계 | 익명 | 2025-07-15 | 조회수 57

# 미적분학 ## 개요 미적분학(calculus)은 수학의 중요한 분야로, 변화와 누적을 연구하는 학문이다. 17세기에 뉴턴(Isaac Newton)과 라이프니츠(Gottfried Wilhelm Leibniz)에 의해 체계화된 이 분야는 물리학, 공학, 경제학 등 다양한 과학 분야에서 필수적인 도구로 사용된다. 미적분학은 **미분**과 **적분** 두 가...