# 그래프 표현 함수의 **그래프 표현**(Graphical Representation)은 함수의 정의역과 공역 사이의 관계를 시각적으로 나타내는 방법으로, 미적분학에서 매우 중요한 도구 중 하나입니다. 함수의 그래프를 통해 함수의 성질, 변화 양상, 극값, 연속성, 미분 가능성 등을 직관적으로 파악할 수 있으며, 복잡한 수학적 개념을 이해하고 설명하는 ...
검색 결과
"직교좌표계"에 대한 검색 결과 (총 5개)
# 평행이동 평행이동(平行移動, Translation)은 기하학에서 도형이나 점, 선분, 또는 전체 평면상의 객체를 **특정 방향으로 일정한 거리만큼 이동시키는 변환**을 말한다. 이 과정에서 도형의 크기, 모양, 방향은 그대로 유지되며, 오직 위치만 변화한다. 평행이동은 합동 변환(congruence transformation)의 한 종류로, 도형 간의...
# 복소수 복소수(複素數, Complex)는 실수부와 허부로 구성된 수 체계로 수학, 물리학, 공학 등 다양한 분야에서 핵심적인 역할을 한다.소수는 차원 평면상 점으로 시각화할 수, 복소해석학(Complex Analysis의 기초를성한다. 이 문서 복소수의 정, 대수적 성질, 기하적 표현 연산법, 그리고 응용 분야에 대해 체계적으로 설명한다. --- ...
# d-q축 ## 개요 **d-q축**(직좌표계 또는 동기전좌표계은 제어공학, 전기기계 및 전력전자 시스템에서 널리 사용되는 좌표계의 한 형태입니다. 이 좌표계는 3상 교류량(예: 전압, 전류, 자속)을 시간적으로 변하지 않는 직교 성분으로 변환함으로써 시스템 해석과 제어를 간편하게 해줍니다. 특히 유도전동기, 영구자석 동기전동기(PMSM), 인버터 제...
# 좌표기하 ## 개요 좌표기하는 수학의 기하학 분야에서 **직교좌표계**를 활용하여 도형을 대수적 방식으로 표현하고 분석하는 방법론이다. 이는 17세기에 르네 드카르트(René Descartes)가 고안한 해석기하(Analytic Geometry)의 핵심 개념으로, 기존의 순수 기하학과 대수학을 통합하여 수학적 문제를 해결하는 데 중요한 도구로 사용된다...