# 등각사상 등각사상(Conformal Mapping)은 복소해석학에서 중요한 개념 중 하나로, 두 평면 영역 사이의 복소 함수 중에서 각도를 보존하는 특성을 가진 함수를 말한다. 이는 기하학적 변환의 일종으로, 특히 유체역학, 전기공학, 열전도 문제 등 다양한 응용 분야에서 널리 사용된다. 본 문서에서는 등각사상의 정의, 성질, 예시, 그리고 주요 응용...
검색 결과
"전기공학"에 대한 검색 결과 (총 9개)
# 복소수 복소수(複素數, Complex)는 실수부와 허부로 구성된 수 체계로 수학, 물리학, 공학 등 다양한 분야에서 핵심적인 역할을 한다.소수는 차원 평면상 점으로 시각화할 수, 복소해석학(Complex Analysis의 기초를성한다. 이 문서 복소수의 정, 대수적 성질, 기하적 표현 연산법, 그리고 응용 분야에 대해 체계적으로 설명한다. --- ...
# 복소근 ## 개요 복근(複素, Complex Root)이란정식의 해 실수부와 허부를 모두 가질 수 있는 복소수 형태 근을 의미한다. 특히 실계수 다방정식에서 실수 범위 내 해를 찾을 수 없을 때, 복수 범위로 확장하면 해가 존재하는 경우가 많으며, 이러한 해를 복소근 한다. 복소근은 대학의 핵심 개념 중 하나로,16세기 이후 복소수의 체계적인 도입과...
# 극형식 ##요 복소수는 실수와 허수부 구성된 수 체계, $ z = a + bi $단, $ i = \sqrt{-1 $)의 형태 나타낼 수 있다. 표현을 **직교형식**(또는 대수형식)이라 한다. 그러나 복소수를 평면 상의 점이나 벡터로 해할 때, 직교형식 외에도 **극형**(polar form)이라는 또 다른 표현 방식이 유용하다. 극형식은 복소수를 ...
# 주기 함수 개요 **기 함수**(Periodic)는 수학, 특히 함수론에서 매우 중요한 개념 중 하나로, 특정 간격(주기)을 두고 그 함수값이 반복되는 성질을 가진 함수 의미한다. 주기 함수는 자연현상의 반복성, 예를 들어 파동, 진동, 계절 변화 등과 밀접한 관련이 있으며, 삼각함수는 대표적인 주기 함수의 예이다. 이 문서에서는 주기 함수의 정의...
# 유전체 ## 개요 **유전**(Dielectric)는기 전도성이 매우 낮고, 외부 전기장이 가해졌을 때기적 분극(polarization)이어나는 물질을 말한다. 일반적으로 전도체와 절연체 사이에 위치하며, 전기를 잘 흐르게 하지 않지만 전기장을 저장하거나 조절하는 데 중요한 역할을 한다 유전체는 커패시터, 절연재, 전자소자, 광학소자 등 다양한 분야...
# 전자재료 ## 개요전자재료(電子材料, Electronic Materials)는 전자기기 및 전자회로의 핵심 구성 요소로 사용되는 물질을 의미한다. 이들은 전기적 신호의 생성, 전달, 증폭, 저장, 처리 등을 가능하게 하며, 반도체, 도체, 절연체, 유전체, 자성재료 등 다양한 물리적 특성을 가진 재료들이 포함된다. 전자재료는 현대 정보통신기술(ICT)...
# 적분법 ## 개요 적분법(integral calculus)은 미적분학의 핵심 분야로, 함수의 **적분**을 연구하는 수학 이론이다. 주로 곡선 아래의 넓이, 부피, 누적량 등을 계산하는 데 사용되며, 물리학, 공학, 경제학 등 다양한 분야에서 응용된다. 적분은 미분과 반대되는 개념으로, **미분 방정식**을 해결하거나 함수의 원시함수를 찾는 데 필수적...
# 미적분학 ## 개요 미적분학(calculus)은 수학의 중요한 분야로, 변화와 누적을 연구하는 학문이다. 17세기에 뉴턴(Isaac Newton)과 라이프니츠(Gottfried Wilhelm Leibniz)에 의해 체계화된 이 분야는 물리학, 공학, 경제학 등 다양한 과학 분야에서 필수적인 도구로 사용된다. 미적분학은 **미분**과 **적분** 두 가...