# 등분산성 등분산성(等分散性, Homoscedasticity)은 통계학, 특히 회귀분석에서 매우 중요한 가정 중 하나로, 회귀 모형의 잔차(residuals)가 모든 독립변수 값에 대해 동일한 분산을 가진다는 성질을 의미합니다. 이 가정이 만족되지 않을 경우, 회귀 계수의 추정치는 여전히 불편(unbiased)할 수 있지만, 표준오차의 추정이 부정확해져...
검색 결과
"신뢰구간"에 대한 검색 결과 (총 17개)
# 다중 선형 회귀 다중 선형 회귀(Multiple Linear Regression)는 하나의 종속 변수(dependent variable)와 두 개 이상의 독립 변수(independent variables) 간의 선형 관계를 모델링하는 통계적 기법이다. 머신러닝과 통계학에서 널리 사용되며, 특히 수치 예측 문제(regression problems)에서 ...
# 회귀 계수 회귀 계수(Regression Coefficient)는 회귀분석에서 독립변수(설명변수가 종속변(반응변수에 미치는 영향의 크기와 방을 나타내는 통계량이다. 회귀 계수는귀 모형의심 요소로, 데이터 기반으로 변수 간의 관계를 정량적으로 해석하고 예측하는 데 핵심적인 역할을 한다. 본 문서에서는 회귀 계수의 정의, 종류, 해석 방법, 추정 방식, ...
# 등분산성 ## 개요 **등분산**(homoscedasticity)은 통계학에서 회귀 분석 분산 분석(ANOVA), t-검정 등 여러 통계적 추론 방법의 핵심적인 **통계적 가정** 중 하나입니다. 이 가정은 모델의 오차 또는 잔차(residuals)의 분산이 독립 변수의 모든 수준이나 관측값에 관계없이 **일정하다**는 것을 의미합니다. 반대로, 분...
# 확률적 모델링 ## 개요 **확률 모델링**(Probabilistic)은 불확실성과 랜성을 내재한 현상이나 시스템을 수학적으로 표현하고 분석하기 위한 통계학 및 확률론의 핵심 기법이다. 현실 세계의 많은 현상은 결정론적으로 예측하기 어려우며, 관측 오차, 자연스러운 변동성, 또는 정보의 부족 등으로 인해 확률적인 접근이 필요하다. 확률적 모델링은 이...
# ACF ## 개요 ACF(Autorrelation Function, 자기관함수)는 시계열 분석에서 중요한 개념 중 하나로, **한 시계열 데이터 내에서 서로 다른 시점의 관측값 사이의 상관관계 측정하는 함수**입니다 시계열 데이터는 시간에 따라 순차적으로 수집된 데이터이므로, 현재과 과거의 사이에 일정한 관계가 존재할 수 있으며, 이러한 관계를 수치...
# ACF 플롯 ## 개요 ACF 플롯utocorrelation Function Plot), 즉자기상관 함수 플롯**은 시계열 분석에서 핵심적인 시각화 도구 중 하나입니다. 이 플롯은 시계열의 각 시점 간 상관관계를 나타내며, 특히 과거 관측값이 현재 관측값에 어떤 영향을 미치는지를 파악하는 데 사용됩니다. ACF 플롯은 시계열 모델링, 특히 ARIMA...
# Forecasting: Principles and Practice ## 개요 **Forecasting: Principles and**(이하 F)는 예측 분석의 기에서 고급 기법까지를 체계적으로 다루는 대적인 데이터과학 서적 중 하나로, 특히 시계열 예측(Time Series Forecasting) 분야에서 널리 활용되는 오픈 액세스(Open Acce...
# 설명변수의 분산## 개요 회귀분석(Regression Analysis)은 종속변수(dependent variable)와 이상의 독립변수(independent variable) 간의 관계를 모델링하고 분석하는 통계적 기법이다. 이 과정에서 독립변수는 일반적으로 **설명변수**(explanatory variable) 또는 **예측변수**(predictor...
# 분산 ## 개요 **분산**(Variance)은 통계학에서 데이터의 산포도, 즉 데이터 값들이 평균을 중심으로 얼마나 퍼져 있는지를 나타내는 대표적인 척도이다. 분산은 회귀분석, 추정, 가설 검정 등 다양한 통계적 분석에서 핵심적인 역할을 하며, 데이터의 변동성과 불확실성을 정량적으로 평가하는 데 사용된다. 특히 회귀분석에서는 잔차의 분산, 설명변수...
# 오차 함수 ##요 오차 함수(Error Function)는 수학, 특히 **확론**, **통계학**, **리학**, 그리고공학**에서 매우 중요한할을 하는 특수 함수이다. 이 함수는 정규분포의 누적분함수와 밀접한 관련이 있으며, 미분방정식의 해나 확률 계산에서 자주 등장한다. 오차 함수는 주로 **가우시안 적분**(Gaussian integral)과...
# 오차항 오차항(Error Term)은 통계학과귀 분석에서 매우 중요한 개념, 모델이 설명하지 못하는 데이터의 변동성을 나타냅. 이는 관된 종속 변수의 값과 회귀 모델이 예측한 값 사이의 차이를 의미하며, 모델의 정확도를 평가하고 개선하는 데 핵심적인 역할을 합니다. 오차항은 일반적으로 잔차(Residual)와 혼동되기도 하지만, 통계 이론에서는 모집단...
# 박스플롯 ## 개요 **박스플**(Box Plot), 또는 **상 수염 그림**(Box-and-isker Plot) 데이터의 분포와 산포도를 시각적으로 표현하는 통 그래프이다. 주로 연속형 데이터 중심 경향, 산포, 왜도, 이상치(outlier) 등을 한눈에 파악할 수 있도록 설계되어 있으며, 특히 여러 그룹 간의 분포를 비교할 때 매우 유용하다. ...
# 수학적 표현 수학적 표현(Mathematical Expression)은 수학적 개념, 관계, 연산 등을 기호와 언어를 통해 명확하고 간결하게 전달하는 수단이다. 수학은 추상적인 사고를 기반으로 하기 때문에, 이를 효과적으로 기술하고 전달하기 위해서는 체계화된 표현 방식이 필수적이다. 수학적 표현은 단순한 기호 나열을 넘어서 논리적 구조와 의미를 내포하...
# 최소 제곱법 ## 개요 최소 제곱법**(Least Squares Method)은 통계학과 데이터 분석에서 널리 사용되는 수학적 기법으로,측된 데이터와델의 예측값 사이의 오차를 최소화 방식으로 모델의 매개변수를 추정하는 방법이다. 특히 **회귀분석**(Regression Analysis)에서 독립변수와 종속변수 간의 관계를 설명하기 위한 직선(또는 곡...
# 선형 최소 제곱법 ## 개요 선형 최 제곱법(Linear Least Squares Method)은 통계학 수치해석에서 널리 사용되는귀분석 기법으로, 관측된 데이터와 모델의 예측값 사이의 **잔차 제곱합**(Sum of Squared Residuals)을 최소화하여 모의 파라미터를 추정하는 방법입니다. 이 방법은 선 회귀 모델의 추정에 가장 기본적이면...
# 회귀 계수 ## 개요 회귀 계수는 통계학에서 변수 간 관계를 모델링하고 예측하는 데 사용되는 핵심 개념입니다. 주로 선형 회귀 분석을 통해 독립변수와 종속변수 사이의 수량적 관계를 정량화합니다. 이 문서에서는 회귀 계수의 정의, 종류, 계산 방법, 해석 방식 및 실제 적용 사례에 대해 상세히 설명합니다. --- ## 정의 및 개념 ### 선형 회...